Abstract
A mathematical model for cholera is formulated that incorporates hyperinfectivity and temporary immunity using distributed delays. The basic reproduction number \(\mathcal{R}_{0}\) is defined and proved to give a sharp threshold that determines whether or not the disease dies out. The case of constant temporary immunity is further considered with two different infectivity kernels. Numerical simulations are carried out to show that when \(\mathcal{R}_{0}>1\), the unique endemic equilibrium can lose its stability and oscillations occur. Using cholera data from the literature, the quantitative effects of hyperinfectivity and temporary immunity on oscillations are investigated numerically.







Similar content being viewed by others
References
Alam, A., LaRocque, R. C., Harris, J. B., Vanderspurt, C., Ryan, E. T., Qadri, F., & Calderwood, S. B. (2005). Hyperinfectivity of human-passaged Vibrio cholerae by growth in the infant mouse. Infect. Immun., 73, 6674–6679.
Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecol. Lett., 9, 467–484.
Andrews, J. R., & Basu, S. (2011). Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet, 377, 1248–1255.
Atkinson, F. V., & Haddock, J. R. (1988). On determining phase spaces for functional differential equations. Funkc. Ekvacioj, 31, 331–347.
Beretta, E., & Kuang, Y. (2002). Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33, 1144–1165.
Beretta, E., & Takeuchi, Y. (1995). Global stability of an SIR epidemic model with time delays. J. Math. Biol., 33, 250–260.
Beretta, E., & Takeuchi, Y. (1997). Convergence results in SIR epidemic models with varying population sizes. Nonlinear Anal., 28, 1909–1921.
Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I., & Rinaldo, A. (2008). On the space-time evolution of a cholera epidemics. Water Resour. Res., 44, W01424.
Bertuzzo, E., Mari, L., Righetto, L., Gatto, M., Casagrandi, R., Blokesch, M., Rodriguez-Iturbe, I., & Rinaldo, A. (2011). Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophys. Res. Lett., 38, L06403.
Bhattacharya, S., Black, R., Bourgeois, L., Clemens, J., Cravioto, A., Deen, J. L., Dougan, G., Glass, R., Grais, R. F., Greco, M., Gust, I., Holmgren, J., Kariuki, S., Lambert, P.-H., Liu, M. A., Longini, I., Nair, G. B., Norrby, R., Nossal, G. J. V., Ogra, P., Sansonetti, P., von Seidlein, L., Songane, F., Svennerholm, A.-M., Steele, D., & Walker, R. (2009). The cholera crisis in Africa. Science, 324, 885.
Bouma, M. J., & Pascual, M. (2001). Seasonal and interannual cycles of endemic cholera in Bengal 1891–1940 in relation to climate and geography. Hydrobiologia, 460, 147–156.
Brauer, F., van den Driessche, P., & Wang, L. (2008). Oscillations in a patchy environment disease model. Math. Biosci., 215, 1–10.
Capasso, V., & Paveri-Fontana, S. L. (1979). A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. épidémiol. Santé Publique, 27, 121–132.
Chao, D. L., Halloran, M. E., & Longini, I. M. Jr. (2011). Vaccination strategies for epidemic cholera in Haiti with implications for the developing world. Proc. Natl. Acad. Sci. USA, 108, 7081–7085.
Codeço, C. T. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis., 1, 1.
Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M., & Colford, J. M. Jr. (2002). Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect., 110, 783–790.
Emch, M., Feldacke, C., Islam, M. S., & Ali, M. (2008). Seasonality of cholera from 1974 to 2005: a review of global patterns. Int. J. Health Geogr., 7, 31.
Enserink, M. (2010). Haiti’s outbreak is latest in cholera’s new global assault. Science, 330, 738–739.
Feachem, R. G., Bradley, D. J., Garelick, H., & Mara, D. D. (1983). Vibrio cholerae and cholera. In Sanitation and disease—health aspects of excreta and wastewater management (pp. 297–325). New York: Wiley.
Goh, K. T., Teo, S. H., Lam, S., & Ling, M. K. (1990). Person-to-person transmission of cholera in a psychiatric hospital. J. Infect., 20, 193–200.
Hartley, D. M., Morris, J. G. Jr., & Smith, D. L. (2006). Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 3, 63–69.
Hethcote, H. W., Stech, H. W., & van den Driessche, P. (1981). Nonlinear oscillations in epidemic models. SIAM J. Appl. Math., 40, 1–9.
Hino, Y., Murakami, S., & Naito, T. (1991). Lectures notes in math.: Vol. 1473. Functional differential equations with infinite delay. Berlin: Springer.
Holmberg, S. D., Harris, J. R., Kay, D. E., Hargrett, N. T., Parker, R. D. R., Kansou, N., Rao, N. U., & Blake, P. A. (1984). Foodborne transmission of cholera in Micronesian households. Lancet, 323, 325–328.
Huang, G., & Takeuchi, Y. (2011). Global analysis on delay epidemiological dynamic models with nonlinear incidence. J. Math. Biol., 63, 125–139.
Huq, A., Sack, R. B., Nizam, A., Longini, I. M., Nair, G. B., Ali, A., Morris, J. G. Jr., Khan, M. N. H., Siddique, A. K., Yunus, M., Albert, M. J., Sack, D. A., & Colwell, R. R. (2005). Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl. Environ. Microbiol., 71, 4645–4654.
Jin, Z., & Ma, Z. (2006). The stability of an SIR epidemic model with time delays. Math. Biosci. Eng., 3, 101–109.
Jin, Z., Ma, Z., & Han, M. (2006). Global stability of an SIRS epidemic model with delays. Acta Sci. Math., 26B, 291–306.
Joh, R. I., Wang, H., Weiss, H., & Weitz, J. S. (2009). Dynamics of indirectly transmitted infectious diseases with immunological threshold. Bull. Math. Biol., 71, 845–862.
Kaper, J. B., Morris, J. G. Jr., & Levine, M. M. (1995) Cholera, Clin. Microbiol. Rev., 8, 48–86.
King, A. A., Ionides, E. L., Pascual, M., & Bouma, M. J. (2008). Inapparent infections and cholera dynamics. Nature, 454, 877–890.
Koenig, R. (2009). International groups battle cholera in Zimbabwe. Science, 323, 860–861.
Korobeinikov, A. (2004). Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol., 21, 75–83.
Korobeinikov, A., & Maini, P. K. (2004). A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng., 1, 57–60.
LaSalle, J. P. (1976). The stability of dynamical systems, Regional conference series in applied mathematics. Philadelphia: SIAM.
Levine, M., Black, R., Clements, M., Cisneros, L., Nalin, D., & Young, C. (1981). Duration of infection-derived immunity to cholera. J. Infect. Dis., 143, 818–820.
Li, M. Y., & Shu, H. (2010). Global dynamics of an in-host viral model with intracellular delays. Bull. Math. Biol., 72, 1429–1505.
Li, M. Y., Shuai, Z., & Wang, C. (2010). Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl., 361, 38–47.
Magal, P., McCluskey, C. C., & Webb, G. F. (2010). Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal., 89, 1109–1140.
McCluskey, C. C. (2009). Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng., 6, 603–610.
McCluskey, C. C. (2010). Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal., Real World Appl., 11, 55–59.
Merrell, D. S., Butler, S. M., Quadri, F., Dolganov, N. A., Alam, A., Cohen, M. B., Calderwood, S. B., Schoolnik, G. K., & Camilli, A. (2002). Host-induced epidemic spread of cholera bacterium. Nature, 417, 642–645.
Miller, R. K. (1971). Nonlinear Volterra integral equations, Menlo Park: Benjamin
Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D. L., & Morris, J. G. Jr. (2011). Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Natl. Acad. Sci. USA, 108, 8767–8772.
Nakata, Y., Enatsu, Y., & Muroya, Y. (2011). On the global stability of an SIRS epidemic model with distributed delays. Discrete Contin. Dyn. Syst., Supplement, 1119–1128.
Nelson, E. J., Harris, J. B., Morris, J. G. Jr., Calderwood, S. B., & Camilli, A. (2009). Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev., Microbiol., 7, 693–702.
Oseasohn, R., Ahmad, S., Islam, M., & Rahman, A. (1966). Clinical and bacteriological findings among families of cholera patients. Lancet, 287, 340–342.
Pascual, M., Chaves, L. F., Cash, B., Rodo, X., & Yunus, Md. (2008). Predicting endemic cholera: the role of climate variability and disease dynamics. Clim. Res., 36, 131–140.
Pascual, M., Koelle, K., & Dobson, A. P. (2006). Hyperinfectivity in cholera: a new mechanism for an old epidemiological model? PLoS Med., 3(6), 931–932.
Pascual, M., Rodo, X., Ellner, S. P., Colwell, R., & Bouma, M. J. (2000). Cholera dynamics and El Niño-Southern oscillation. Science, 289, 1766–1769.
Ruiz-Moreno, D., Pascual, M., Bouma, M., Dobson, A., & Cash, B. (2007). Cholera seasonality in Madras (1901–1940): dual role for rainfall in endemic and epidemic regions. Ecohealth, 4, 52–62.
Sanches, R. P., Ferreira, C. P., & Kraenkel, R. A. (2011). The role of immunity and seasonality in cholera epidemic. Bull. Math. Biol., 73, 2916–2931.
Sengupta, T. K., Nandy, R. K., Mukhopadyay, S., Hall, R. H., Sathyamoorthy, V., & Ghose, A. C. (1998). Characterization of a 20-k Da pilus protein expressed by a diarrheogenic strain of non-O1/non-O139 Vibrio cholerae. FEMS Microbiol. Lett., 160, 183–189.
Shampine, L. F., & Thompson, S. (2001). Solving DDEs in MATLAB. Appl. Numer. Math., 37, 441–458.
Shuai, Z., & van den Driessche, P. (2011). Global dynamics of cholera models with differential infectivity. Math. Biosci., 234, 118–126.
Snow, J. (1854). The cholera near Golden Square, and at Deptford. Med. Times Gaz., 9, 321–322.
Swerdlow, D. L., Mintz, E. D., Rodriguez, M., Tejada, E., Ocampo, C., Espejo, L., Greene, K. D., Saldana, W., Seminario, L., Tauxe, R. V., Wells, J. G., Bean, N. H., Ries, A. A., Pollack, M., Vertiz, B., & Blake, P. A. (1992). Waterborne transmission of epidemic cholera in Trujillo, Peru: lessons for a continent at risk. Lancet, 340, 28–32.
Tamayo, J. F., Mosley, W. H., Alvero, M. G., Joseph, P. R., Gomez, C. Z., Montague, T., Dizon, J. J., & Henderso, D. A. (1965). Studies of cholera El tor in the Philippines: 3. Transmission of infection among household contacts of cholera patients. Bull. World Health Organ., 33, 645–649.
Tian, J. P., Liao, S., & Wang, J. (2010). Dynamical analysis and control strategies in modeling cholera. Preprint. www.math.ttu.edu/past/redraider2010/Tian2.pdf. Accessed December 14, 2010.
Tian, J. P., & Wang, J. (2011). Global stability for cholera epidemic models. Math. Biosci., 232, 31–41.
Tien, J. H., & Earn, D. J. D. (2010). Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol., 72, 1506–1533.
Tuite, A. R., Tien, J. H., Eisenberg, M., Earn, D. J. D., Ma, J., & Fisman, D. N. (2011). Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann. Intern. Med., 154, 593–601.
van den Driessche, P., & Zou, X. (2007). Modeling relapse in infectious diseases. Math. Biosci., 207, 89–103.
van den Driessche, P., Wang, L., & Zou, X. (2007). Modeling diseases with latency and relapse. Math. Biosci. Eng., 4, 205–219.
Waldor, M. K., Hotez, P. J., & Clemens, J. D. (2010). A national cholera vaccine stockpile—a new humanitarian and diplomatic resource. N. Engl. J. Med., 263, 1910–1914.
Weil, A. A., Khan, A. I., Chowdhury, F., LaRocque, R. C., Faruque, A. S. G., Ryan, E. T., Calderwood, S. B., Qadri, F., & Harris, J. B. (2009). Clinical outcomes of household contacts of patients with cholera in Bangladesh. Clin. Infect. Dis., 49, 1473–1479.
WHO (2007). Cholera annual report 2006. Wkly. Epidemiol. Rec. 82, 273–284.
WHO (2008). Cholera: global surveillance summary 2008. Wkly. Epidemiol. Rec. 84, 309–324.
Acknowledgements
This work originated through a workshop at the Banff International Research Station for Mathematical Innovation and Discovery on “Modelling and Analysis of Options for Controlling Persistent Infectious Diseases,” organized by J. Dushoff, D. Earn, and D. Fisman. The research of ZS and PvdD was supported in part by a Natural Science and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship, an NSERC Discovery Grant, and the Mprime project “Transmission Dynamics and Spatial Spread of Infectious Diseases: Modelling, Prediction and Control.” JHT acknowledges support from the National Science Foundation (OCE-115881), and from the Mathematical Biosciences Institute (NSF DMS 0931642). We thank two anonymous reviewers for helpful comments and some references.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shuai, Z., Tien, J.H. & van den Driessche, P. Cholera Models with Hyperinfectivity and Temporary Immunity. Bull Math Biol 74, 2423–2445 (2012). https://doi.org/10.1007/s11538-012-9759-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11538-012-9759-4