A comprehensive survey on deep learning techniques in CT image quality improvement | Medical & Biological Engineering & Computing Skip to main content
Log in

A comprehensive survey on deep learning techniques in CT image quality improvement

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

High-quality computed tomography (CT) images are key to clinical diagnosis. However, the current quality of an image is limited by reconstruction algorithms and other factors and still needs to be improved. When using CT, a large quantity of imaging data, including intermediate data and final images, that can reflect important physical processes in a statistical sense are accumulated. However, traditional imaging techniques cannot make full use of them. Recently, deep learning, in which the large quantity of imaging data can be utilized and patterns can be learned by a hierarchical structure, has provided new ideas for CT image quality improvement. Many researchers have proposed a large number of deep learning algorithms to improve CT image quality, especially in the field of image postprocessing. This survey reviews these algorithms and identifies future directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brenner D J, Hall E J (2007) Computed tomography-an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  Google Scholar 

  2. Balda M, Hornegger J, Heismann B (2012) Ray contribution masks for structure adaptive sinogram filtering. IEEE Trans Med Imaging 31(6):1228–1239

    Article  Google Scholar 

  3. Manduca A, Yu L, Trzasko J D, Khaylova N, Kofler J M, McCollough C M, Fletcher J G (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919

    Article  Google Scholar 

  4. Wang J, Li T, Lu H, Liang Z (2006) Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography. IEEE Trans Med Imaging 25(10):1272–1283

    Article  Google Scholar 

  5. Sidky E Y, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777

    Article  Google Scholar 

  6. Chen Y, Gao D, Nie C, Luo L, Chen W, Yin X, Lin Y (2009) Bayesian statistical reconstruction for low-dose x-ray computed tomography using an adaptive-weighting nonlocal prior. Comput Med Imaging Graph 33(7):495–500

    Article  Google Scholar 

  7. Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G (2012) Low-dose x-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 31(9):1682–1697

    Article  Google Scholar 

  8. Cai J F, Jia X, Gao H, Jiang S B, Shen Z, Zhao H (2014) Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans Med Imaging 33 (8):1581–1591

    Article  Google Scholar 

  9. Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux J L, Toumoulin C (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58(16):5803

    Article  Google Scholar 

  10. Kang D, Slomka P, Nakazato R, Woo J, Berman DS, Kuo CCJ, Dey D (2013) Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: Medical Imaging 2013: Image processing, international society for optics and photonics, vol 8669, pp 86692G

  11. Yan Z, Li J, Lu Y, Yan H, Zhao Y (2015) Super resolution in CT. Int J Imaging Syst Technol 25(1):92–101

    Article  Google Scholar 

  12. Ota J, Umehara K, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Shirai N, Ishida T (2017) Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography. In: Medical Imaging 2017: Image processing, international society for optics and photonics, vol 10133, pp 101331S

  13. Tian J, Ma K K (2011) A survey on super-resolution imaging. SIViP 5(3):329–342

    Article  Google Scholar 

  14. Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 1920–1927

  15. Gjesteby L, De Man B, Jin Y, Paganetti H, Verburg J, Giantsoudi D, Wang G (2016) Metal artifact reduction in CT: where are we after four decades?. IEEE Access 4:5826–5849

    Article  Google Scholar 

  16. Lell M M, Meyer E, Kuefner M A, May M S, Raupach R, Uder M, Kachelriess M (2012) Normalized metal artifact reduction in head and neck computed tomography. Investig Radiol 47(7):415–421

    Article  Google Scholar 

  17. Wang G, Frei T, Vannier M W (2000) Fast iterative algorithm for metal artifact reduction in x-ray CT. Acad Radiol 7(8):607–614

    Article  CAS  Google Scholar 

  18. Henrich G (1980) A simple computational method for reducing streak artifacts in CT images. Comput Tomogr 4(1):67–71

    Article  CAS  Google Scholar 

  19. Bamberg F, Dierks A, Nikolaou K, Reiser M F, Becker C R, Johnson T R (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21 (7):1424–1429

    Article  Google Scholar 

  20. Wang G (2016) A perspective on deep imaging. IEEE Access 4:8914–8924

    Article  Google Scholar 

  21. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  22. Liu Y, Zhang Y (2018) Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 284:80–89

    Article  Google Scholar 

  23. Wu D, Kim K, El Fakhri G, Li Q (2017) Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging 36(12):2479–2486

    Article  Google Scholar 

  24. Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th International conference on data mining workshops (ICDMW). IEEE, pp 241–246

  25. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision. Springer, pp 630–645

  26. Mao XJ, Shen C, Yang YB (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. arXiv:160309056

  27. Shan H, Zhang Y, Yang Q, Kruger U, Kalra M K, Sun L, Cong W, Wang G (2018) Correction for “3D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2d trained network”[jun 18 1522-1534]. IEEE Trans Med Imaging 37(12):2750–2750

    Article  Google Scholar 

  28. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, vol 27, pp 2672–2680

  29. Han YS, Yoo J, Ye JC (2016) Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv:161106391

  30. Jin K H, McCann M T, Froustey E, Unser M (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522

    Article  Google Scholar 

  31. Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694

    Article  Google Scholar 

  32. Yang Q, Yan P, Kalra MK, Wang G (2017) CT image denoising with perceptive deep neural networks. arXiv:170207019

  33. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:14091556

  34. Wu D, Kim K, Fakhri GE, Li Q (2017) A cascaded convolutional neural network for x-ray low-dose CT image denoising. arXiv:170504267

  35. Shan H, Padole A, Homayounieh F, Kruger U, Khera R D, Nitiwarangkul C, Kalra M K, Wang G (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Mach Intell 1(6):269–276

    Article  Google Scholar 

  36. Kang E, Min J, Ye J C (2017) A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. Med Phys 44(10):360–375

    Article  Google Scholar 

  37. Zhou J, Cunha AL, Do MN (2005) Nonsubsampled contourlet transform: construction and application in enhancement. In: IEEE International Conference on Image Processing 2005. IEEE, vol 1, pp I–469

  38. Kang E, Min J, Ye JC (2017) Wavelet domain residual network (wavresnet) for low-dose x-ray CT reconstruction. arXiv:170301383

  39. Gu J, Ye JC (2017) Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. arXiv:170301382

  40. Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545

    Article  Google Scholar 

  41. Yi X, Babyn P (2018) Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669

    Article  Google Scholar 

  42. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. arXiv:170107875

  43. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra M K, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37(6):1348–1357

    Article  Google Scholar 

  44. Umehara K, Ota J, Ishida T (2018) Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging 31(4):441–450

    Article  Google Scholar 

  45. Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision. Springer, pp 391–407

  46. Song T A, Chowdhury S R, Kim K, Gong K, El Fakhri G, Li Q, Dutta J (2018) Super-resolution pet using a very deep convolutional neural network. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). IEEE, pp. 1–2

  47. Salvador J, Perez-Pellitero E (2015) Naive bayes super-resolution forest. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 325–333

  48. Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE international conference on computer vision, IEEE, pp. 370–378

  49. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 4681–4690

  50. Xiao Y, Peters K R, Fox W C, Rees J H, Rajderkar D A, Arreola M M, Barreto I, Bolch W E, Fang R (2020) Transfer-gan: multimodal CT image super-resolution via transfer generative adversarial networks. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, pp 195–198

  51. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C (2018) Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV). IEEE, pp 11-21

  52. You C, Li G, Zhang Y, Zhang X, Shan H, Li M, Ju S, Zhao Z, Zhang Z, Cong W et al (2019) CT Super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans Med Imaging 39(1):188–203

    Article  Google Scholar 

  53. Lai WS, Huang JB, Ahuja N, Yang MH (2017) Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 624–632

  54. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  Google Scholar 

  55. Gjesteby L, Yang Q, Xi Y, Shan H, Claus B, Jin Y, De Man B, Wang G (2017) Deep learning methods for CT image-domain metal artifact reduction. In: Developments in X-Ray tomography XI, international society for optics and photonics, vol 10391, pp 103910w

  56. Zhang C, Xing Y (2018) CT artifact reduction via U-net CNN. In: Medical Imaging 2018: Image Processing, International Society for Optics and Photonics, vol 10574, pp 105741R

  57. Wang J, Zhao Y, Noble JH, Dawant BM (2018) Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 3–11

  58. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks

  59. Lee J, Gu J, Ye JC (2020) Unsupervised CT metal artifact learning using attention-guided beta-cyclegan. arXiv:200703480

  60. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 2223–2232

  61. Liao H, Lin W A, Zhou S K, Luo J (2019) ADN: Artifact Disentanglement network for unsupervised metal artifact reduction. IEEE Trans Med Imaging 39(3):634–643

    Article  Google Scholar 

  62. Lee H, Lee J (2019) A deep learning-based scatter correction of simulated x-ray images. Electronics 8(9):944

    Article  Google Scholar 

  63. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  Google Scholar 

  64. Zhang K, Zuo W, Gu S, Zhang L (2017b) Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3929–3938

  65. Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, Xu L, Hu X, Zhang L, Wang J et al (2019) Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol 64(14):145003

    Article  Google Scholar 

  66. Liao Y, Wang Y, Li S, He J, Zeng D, Bian Z, Ma J (2018) Pseudo dual energy CT imaging using deep learning-based framework: basic material estimation. In: Medical Imaging 2018: Physics of medical imaging, international society for optics and photonics, vol 10573, pp 105734N

  67. Xu S, Prinsen P, Wiegert J, Manjeshwar R (2017) Deep residual learning in CT physics: scatter correction for spectral CT. In: 2017 IEEE Nuclear science symposium and medical imaging conference (NSS/MIC), IEEE, pp 1-3

  68. Zhang Z, Liang X, Dong X, Xie Y, Cao G (2018) A sparse-view CT reconstruction method based on combination of densenet and deconvolution. IEEE Trans Med Imaging 37(6):1407–1417

    Article  Google Scholar 

  69. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 4700–4708

Download references

Funding

This study received funding from the Fundamental Research Funds for the Central University of China (N2024005-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Teng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ma, L., Li, J. et al. A comprehensive survey on deep learning techniques in CT image quality improvement. Med Biol Eng Comput 60, 2757–2770 (2022). https://doi.org/10.1007/s11517-022-02631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02631-y

Keywords

Navigation