Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Some tumours may not be detected by ultrasound during biopsy, but recent evidence has shown that different tissues can be discerned by electric impedance. This paper explores the application of vibrotactile feedback in an electrode embedded needle to help classify tissue during fine-needle aspiration biopsy from bioimpedance measurements. The process uses electric impedance spectroscopy from 10 Hz to 349 kHz to fit the double-dispersion Cole model through the Newton-Raphson algorithm. A Naive Bayes classifier is then used on the equivalent circuit parameters to estimate the tissue at the needle tip. The method is validated through a series of experiments and user trials. The results show that the vibrotactile feedback is able to help the operator in determining the tissue the needle is in, suggesting that this may prove to be a useful supplement to the standard procedure used today.

This paper explores the application of vibrotactile feedback for an electrode embedded needle to help classify tissue from electric impedance measurements. The data is fit to an equivalent circuit using Newton- Raphon’s method. A Naive Bayes classifier is trained and later used in an experiment to estimate the tissue at the needle tip and provide an assigned vibrotacticle feedback to the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Åberg P, Birgersson U, Elsner P, Mohr P, Ollmar S (2011) Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol 20(8):648–652

    Article  Google Scholar 

  2. Azimi P, Golnabi H (2009) Precise formulation of electrical capacitance for a cylindrical capacitive sensor. J Appl Sci 9(8):1556–1561

    Article  Google Scholar 

  3. Bueschel P, Troeltzsch U, Kanoun O (2011) Use of stochastic methods for robust parameter extraction from impedance spectra. Electrochim Acta 56(23):8069–8077

    Article  CAS  Google Scholar 

  4. Cole K (1941) Dispersion and absorption in dielectrics. J Chem Phys 9:341

    Article  CAS  Google Scholar 

  5. De Luca CJ, Forrest WJ (1972) An electrode for recording single motor unit activity during strong muscle contractions. IEEE Trans Biomed Eng BME-19(5):367–372

    Article  Google Scholar 

  6. Dodde R, Bull J, Shih A (2012) Bioimpedance of soft tissue under compression. Physiol Meas 33(6):1095

    Article  CAS  Google Scholar 

  7. Ebeid A, Elshamy A (2018) Hypoechoic versus hypervascular lesion in the diagnosis of prostatic carcinoma. Afr J Urol 24(3):169–174

    Article  Google Scholar 

  8. Freeborn TJ (2013) A survey of fractional-order circuit models for biology and biomedicine. IEEE J Emerg Sel Top Circ Syst 3(3):416–424

    Article  Google Scholar 

  9. Freeborn TJ, Maundy B, Elwakil AS (2014) Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements. Med Biol Eng Comput 52(9):749–758

    Article  Google Scholar 

  10. Fricke H, Morse S (1925) The electric resistance and capacity of blood for frequencies between 800 and 41/2 million cycles. J Gen Physiol 9(2):153

    Article  CAS  Google Scholar 

  11. Geddes L (1997) Historical evolution of circuit models for the electrode-electrolyte interface. Ann Biomed Eng 25(1):1

    Article  CAS  Google Scholar 

  12. Grahame DC (1952) Mathematical theory of the faradaic admittance. J Electrochem Soc 99 (12):370–385

    Article  Google Scholar 

  13. Graif T, Loeb S, Roehl KA, Gashti SN, Griffin C, Yu X, Catalona WJ (2007) Under diagnosis and over diagnosis of prostate cancer. J Urol 178(1):88–92

    Article  Google Scholar 

  14. Green TC, Hogendijk M, Seiler K, DeSoto L, Ziring E (2004) Brachytherapy needle with impedance measurement apparatus and methods of use. US Patent 6,709,380

  15. Grossi M, Riccò B (2017) Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J Sens Sens Syst 6(2):303–325

    Article  Google Scholar 

  16. Habibi M, Klemer DP, Raicu V (2010) Two-dimensional dielectric spectroscopy: Implementation and validation of a scanning open-ended coaxial probe. Rev Sci Instrum 81(7):075, 108

    Article  Google Scholar 

  17. Halter RJ, Schned A, Heaney J, Hartov A, Paulsen KD (2009) Electrical properties of prostatic tissues: I. single frequency admittivity properties. J Urol 182(4):1600–1607

    Article  Google Scholar 

  18. Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD (2008) Electrical impedance spectroscopy of benign and malignant prostatic tissues. The Journal of urology 179(4):1580–1586. https://doi.org/10.1016/j.juro.2007.11.043

    Article  Google Scholar 

  19. Ihnatsenka B, Boezaart AP (2010) Ultrasound: basic understanding and learning the language. Int J Shoulder Surg 4(3):55

    Article  Google Scholar 

  20. Ivorra A, Genescà M, Sola A, Palacios L, Villa R, Hotter G, Aguiló J (2005) Bioimpedance dispersion width as a parameter to monitor living tissues. Physiol Meas 26(2):S165

    Article  Google Scholar 

  21. Jossinet J (1998) The impedivity of freshly excised human breast tissue. Physiol Meas 19(1):61

    Article  CAS  Google Scholar 

  22. Kari J, Annala K, Annus P, Seppä VP, Kronström K (2015) A thin needle with bio-impedance measuring probe: tissue recognition performance assessed in in vivo animal study. Injeq Oy Ltd., Tech Rep

  23. Kent B, Cusipag A, Rossa C (2019) Tissue discrimination through force-feedback from impedance spectroscopy in robot-assisted surgery. International Conference on Smart Multimedia, San Diego, Dec 2019. Accepted

  24. Keshtkar A, Keshtkar A, Smallwood RH (2006) Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiol Meas 27(7):585

    Article  Google Scholar 

  25. Korb KB, Nicholson AE (2010) Bayesian artificial intelligence. CRC press

  26. Martinsen OG, Grimnes S Bioimpedance and bioelectricity basics. Academic press Third Edition

  27. Min M, Lehti-Polojärvi M, Hyttinen J, Rist M, Land R, Annus P (2018) Bioimpedance spectro-tomography system using binary multifrequency excitation. Int J Bioelectromagn 209:76–79. https://doi.org/10.18154/RWTH-CONV-224930

    Google Scholar 

  28. Mishra V, Schned A, Hartov A, Heaney J, Seigne J, Halter R (2013) Electrical property sensing biopsy needle for prostate cancer detection. Prostate 73(15):1603–1613

    CAS  PubMed  Google Scholar 

  29. Nahir TM (2005) Impedance spectroscopy: Theory, experiment, and applications, edited by evgenij barsoukov (texas instruments inc.) and j. ross macdonald (university of north carolina, chapel hill). john wiley & sons, inc.: Hoboken, nj. 2005. xvii+ 596 pp isbn 0471-64749-7

  30. Nejadgholi I, Caytak H, Bolic M, Batkin I, Shirmohammadi S (2015) Preprocessing and parameterizing bioimpedance spectroscopy measurements by singular value decomposition. Physiol Meas 36(5):983

    Article  Google Scholar 

  31. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen B, Busch C (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50 (4):562–566

    Article  CAS  Google Scholar 

  32. Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot: An Int J 31(6):499–508

    Article  CAS  Google Scholar 

  33. Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables, vol. 30. Siam. Edition from 2000 republication of 1970 publication

  34. Platt G (2020) How do i convert a continuous-time model to a discrete-time model? Coursera Inc. Accessed: 2020-03-06. https://www.coursera.org/lecture/equivalent-circuit-cell-modelsimulation/2-1-5-how-do-i-convert-a-continuous-time-model-to-a-discretetime-model-ZTWU4

  35. Westebring-van der Putten EP, Goossens RH, Jakimowicz JJ, Dankelman J (2008) Haptics in minimally invasive surgery–a review. Minim Invasive Ther Allied Technol 17(1):3–16

    Article  CAS  Google Scholar 

  36. Randles JEB (1947) Kinetics of rapid electrode reactions. Discuss Faraday Soc 1:11–19

    Article  Google Scholar 

  37. Raschka S (2014) Naive bayes and text classification i-introduction and theory. arXiv:1410.5329

  38. Rigaud B, Hamzaoui L, Frikha M, Chauveau N, Morucci JP (1995) In vitro tissue characterization and modelling using electrical impedance measurements in the 100 hz-10 mhz frequency range. Physiol Meas 16(3A):A15

    Article  CAS  Google Scholar 

  39. Theodoridis S (2015) Machine learning: a Bayesian and optimization perspective. Academic Press

  40. Trebbels D, Fellhauer F, Jugl M, Haimerl G, Min M, Zengerle R (2011) Online tissue discrimination for transcutaneous needle guidance applications using broadband impedance spectroscopy. IEEE Trans Biomed Eng 59(2):494–503

    Article  Google Scholar 

  41. Warburg E (1899) Ueber das verhalten sogenannter unpolarisirbarer elektroden gegen wechselstrom. Ann Phys 303(3):493–499

    Article  Google Scholar 

  42. Wasterlain S, Candusso D, Harel F, François X., Hissel D (2010) Diagnosis of a fuel cell stack using electrochemical impedance spectroscopy and bayesian networks. In: 2010 IEEE vehicle power and propulsion conference. IEEE, pp 1–6

  43. Wu Q, Bell D, McGinnity M, Guo G (2005) Decision making based on hybrid of multi-knowledge and naïve bayes classifier. In: Foundations of data mining and knowledge discovery. Springer, pp 171–184

  44. Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng BME-34(11):843–852

    Article  Google Scholar 

  45. Yun J, Hong YT, Hong KH, Lee JH (2018) Ex vivo identification of thyroid cancer tissue using electrical impedance spectroscopy on a needle. Sens Actuators B 261:537–544

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), and the Social Sciences and Humanities Research Council of Canada (SSHRC) [funding reference number NFRFE-2018-01986]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), par les Instituts de recherche en santé du Canada (IRSC), et par le Conseil de recherches en sciences humaines du Canada (CRSH), [numéro de référence NFRFE-2018-01986]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brayden Kent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kent, B., Rossa, C. Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy. Med Biol Eng Comput 60, 19–31 (2022). https://doi.org/10.1007/s11517-021-02454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02454-3

Keywords

Navigation