IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement—a proof of concept | Medical & Biological Engineering & Computing Skip to main content
Log in

IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement—a proof of concept

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A lot of attention has been paid to wearable inertial sensors regarded as an alternative solution for outdoor human motion tracking. Relevant joint angles can only be calculated from anatomical orientations, but they are negatively impacted by soft tissue artifact (STA) defined as skin motion with respect to the underlying bone; the accuracy of measured joint angle during movement is affected by the ongoing misalignment of the sensor. In this work, a new sensor-to-segment calibration using inertial measurement units is proposed. Inspired by the multiple calibration for a cluster of skin markers, it consists in performing first multiple static postures of the upper limb in all anatomical planes. The movements that affect sensor alignment are identified then alignment differences between sensors and segment frames are calculated for each posture and linearly interpolated. Experimental measurements were carried out on a mechanical model and on a subject who performed different movements of right elbow and shoulder. Multiple calibration showed significant improvement in joint angle measurement on the mechanical model as well as on human joint angle comparing to those obtained from attached sensors after technical calibration. During shoulder internal-external rotation, the maximal error value decreased more than 50% after correction.

Elbow flexion-extension joint angle values obtained from IMUs are well-corrected after applying multiple calibration procedure. Though shoulder internal-external rotation joint angle is more affected by soft tissue artifact, multiple calibration procedure improves the angle values obtained from IMUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( {p}_i^0 \) :

Segment i orientation at neutral posture 0

\( {q}_i^0 \) :

Sensor i frame orientation at neutral posture 0

\( {\overset{\sim }{q}}_1^0 \) :

Rotation of IMU1 at posture 0 to align with gravity

\( {p}_i^j \) :

Segment i orientation at posture j

\( {q}_i^j \) :

Sensor i orientation at posture j

\( \tilde{p}_{i}^j \) :

90° rotation about a given axis of the segment i at posture j

\( \tilde{q}_{i}^j \) :

Alignment difference between \( {q}_i^j \) and \( {p}_i^j \)

\( {\overline {\overset{\sim }{q}}}_i^{\mathbf{u},\alpha } \) :

Mean value of all alignment differences \( \tilde{q}_{i}^j\kern0.24em \) calculated for each segment i at all postures j resulting either from the rotation of the joint angle α = 0° or 90° about the axis u and presenting the same segment frame orientation

\( {\overline {\overset{\sim }{q}}}_i^{\mathbf{u},}\left(\theta \right) \) :

Alignment correction during movement and obtained by linear interpolation

\( {\overline {\overset{\sim }{q}}}_i^{\mathbf{u},},\mathbf{v}\left({\theta}_1,{\theta}_2\right) \) :

Alignment correction during movement and obtained by bilinear interpolation

p i :

Corrected segment frame orientation

References

  1. Rowe PJ, Myles CM, Hillmann SJ, Hazlewood ME (2001) Validation of flexible electrogoniometry as a measure of joint kinematics. Physiotherapy 87:479–488. https://doi.org/10.1016/S0031-9406(05)60695-5

    Article  Google Scholar 

  2. Alvarez D, Alvarez JC, Gonzalez RC, Lopez AM (2015) Upper limb joint angle measurement in occupational health. Comput Meth Biomech Biomed Eng 19:159–170. https://doi.org/10.1080/10255842.2014.997718

    Article  Google Scholar 

  3. Robert-Lachaine X, Mecheri H, Larue C, Plamondon A (2017) Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med Biol Eng Comput 55:609–619. https://doi.org/10.1007/s11517-016-1537-2

    Article  PubMed  Google Scholar 

  4. Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A (2015) Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors 15:18813–18833. https://doi.org/10.3390/s150818813

    Article  PubMed  Google Scholar 

  5. Bolink SAAN, Naisas H, Senden R, Essers H, Heyligers IC, Meijer K, Grimm B (2016) Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers, and step-up transfers: comparison with an optoelectronic motion capture system. Med Eng Phys 38:225–231. https://doi.org/10.1016/j.medengphy.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  6. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry part 1: theorical background. Gait Posture 21:186–196. https://doi.org/10.1016/j.gaitpost.2004.01.010

    Google Scholar 

  7. Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A (1997) Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Movement Sci 16:259–274. https://doi.org/10.1016/S0167-9457(96)00055-3

    Article  Google Scholar 

  8. Qureshi U, Golnaraghi F (2017) An algorithm for the in field calibration of a MEMS IMU. IEEE Sensors J 17:7479–7486. https://doi.org/10.1109/JSEN.2017.2751572

    Article  Google Scholar 

  9. Kopacik A, Kajanek P, Liptak I (2016) Systematic error elimination using additive measurements and combination of two low cost ISMs. IEEE Sensors J 16:6239–6248. https://doi.org/10.1109/JSEN.2016.2581200

    Article  Google Scholar 

  10. Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput 46:169–178. https://doi.org/10.1007/s11517-007-0296-5

    Article  PubMed  Google Scholar 

  11. Vargas–Valencia LS, Elias A, Rocon E, Bastos–Filho T, Frizera A (2016) An IMU–to–body alignment method applied to human gait analysis. Sensors 12:2090–2107. https://doi.org/10.3390/s16122090

    Article  Google Scholar 

  12. de Vries WHK, Veeger HEJ, Cutti AG, Baten C, Van der Helm FCT (2010) Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J Biomech 43:1983–1988. https://doi.org/10.1016/j.jbiomech.2010.03.007

    Article  PubMed  Google Scholar 

  13. Robert-Lachaine X, Mecheri H, Larue C, Plamondon A (2017) Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Gait Posture 54:80–86. https://doi.org/10.1016/j.gaitpost.2017.02.029

    Article  Google Scholar 

  14. Lach E (2016) Evaluation of automatic calibration method for motion tracking using magnetic and inertial sensors. In: Piętka E, Badura P, Kawa J, Wieclawek W (eds) Information technologies in medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-39904-1_30

    Chapter  Google Scholar 

  15. Camomilla V, Bonci T, Dumas R, Cheze L, Cappozzo A (2015) A model of the soft tissue artefact rigid component. J Biomech 48:1752–1759. https://doi.org/10.1016/j.jbiomech.2015.05.007

    Article  CAS  Google Scholar 

  16. Blache Y, Dumas R, Lundberg A, Begon M (2017) Main component of soft tissue artifact of the upper-limbs with respect to different functional, daily life and sports movements. J Biomech 62:39–46. https://doi.org/10.1016/j.jbiomech.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  17. Cutti AG, Cappello A, Davalli A (2006) In vivo validation of a new technique that compensates for soft tissue artefact in the upper-arm: preliminary results. Clin Biomech 21:S13–S19. https://doi.org/10.1016/j.clinbiomech.2005.09.018

    Article  Google Scholar 

  18. Cutti AG, Paolini G, Troncossi M, Cappello A, Davalli A (2005) Soft tissue artefact assessment in humeral axial rotation. Gait Posture 21:341–349. https://doi.org/10.1016/j.gaitpost.2004.04.001

    Article  Google Scholar 

  19. Cappello A, Stagni R, Fantozzi S, Leardini A (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. IEEE Trans on Biomed Eng 52:992–998. https://doi.org/10.1109/TBME.2005.846728

    Article  Google Scholar 

  20. Meng D, Shoepe T, Vejarano G (2016) Accuracy improvement on the measurement of human-joint angles. IEEE J Biomed Health Informatics 20:498–507. https://doi.org/10.1109/JBHI.2015.2394467

    Article  Google Scholar 

  21. Camomilla V, Dumas R, Cappozzo A (2017) Human movement analysis: the soft tissue artefact issue. J Biomech 62:1–4. https://doi.org/10.1016/j.jbiomech.2017.09.001

    Article  Google Scholar 

  22. Brochard S, Lempereur M, Rémy-Néris O (2011) Double calibration: an accurate, reliable and easy-to-use method for 3D scapular motion analysis. J Biomech 44:751–754. https://doi.org/10.1016/j.jbiomech.2010.11.017

    Article  PubMed  Google Scholar 

  23. Ricci L, Formica D, Sparaci L, Lasorsa FR, Taffoni F, Tamilia E, Guglielmelli E (2014) A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors. Sensors 14:1057–1072. https://doi.org/10.3390/s140101057

    Article  PubMed  Google Scholar 

  24. Prayudi I, Kim D (2012) Design and implementation of IMU-based human arm motion capture system, in Proc. IEEE International Conference on Mechatronics and Automation. https://doi.org/10.1109/ICMA.2012.6283221

  25. Miezal M, Taetz B, Bleser G (2016) On inertial body tracking in the presence of model calibration errors. Sensors. 16. https://doi.org/10.3390/s16071132

    Article  Google Scholar 

  26. Taetz B, Bleser G, Miezal M (2016) Towards self-calibrating inertial body motion capture, in Proc. IEEE 19th International Conference on Information Fusion (FUSION):1751–1759

  27. Muller P, Begin MA, Schauer T, Seel T (2016) Alignment-free, self-calibrating elbow angles measurement using inertial sensors. IEEE J Biomed Health Informatics 21:312–319. https://doi.org/10.1109/JBHI.2016.2639537

    Article  Google Scholar 

  28. Palermo E, Rossi S, Marini F, Patane F, Cappa P (2014) Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 52:145–155. https://doi.org/10.1016/j.measurement.2014.03.004

    Article  Google Scholar 

  29. Luinge HJ, Veltink PH, Baten CTM (2007) Ambulatory measurement of arm orientation. J Biomech 40:78–85. https://doi.org/10.1016/j.jbiomech.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  30. Ligorio G, Zanotto D, Sabatini AM, Agrawal SK (2017) A novel functional calibration method for real-time elbow joint angles estimation with magnetic-inertial sensors. J Biomech 54:106–110. https://doi.org/10.1016/j.jbiomech.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  31. Wu G, Van der Helm FCT, Veeger HEJ et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z, Xiong Y, Dai H, Xia X (2017) An experimental performance evaluation of the orientation accuracy of four nine-axis MEMS motion sensors. in Proc. IEEE 5th International Conference on Enterprise Systems ICES:185–189. https://doi.org/10.1109/ES.2017.37

  33. Bosch Sensortech (2016) Datasheet BNO055 intelligent 9-axis absolute orientation sensor. Available via https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BNO055-DS000.pdf. Accessed 15 Jun 2019

  34. Cooper RA, Boninger ML, Shimada SD, Lawrence BM (1999) Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion. American J Phys Med Rehabil 78:435–446

    Article  CAS  Google Scholar 

  35. Cao L, Masuda T, Morita S (2007) Compensation for the effect of soft tissue artefact on humeral axial rotation angle. J Med Dent Sci 54:1–7. https://doi.org/10.11480/jmds.540101

    Article  PubMed  Google Scholar 

  36. Cereatti A, Bonci T, Akbarshahi M, Aminian K, Barre A et al (2017) Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J Biomech 62:5–13. https://doi.org/10.1016/j.jbiomech.2017.02.004

    Article  PubMed  Google Scholar 

  37. Donati M, Camomilla V, Vannozzi G, Cappozzo A (2007) Enhanced anatomical calibration in human movement analysis. Gait Posture 26:179–185. https://doi.org/10.1016/j.gaitpost.2007.04.009

    Article  PubMed  Google Scholar 

  38. Picerno P, Cereatti A, Cappozzo A (2008) Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 28:588–595. https://doi.org/10.1016/j.gaitpost.2008.04.003

    Article  PubMed  Google Scholar 

  39. Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech 11:90–100. https://doi.org/10.1016/0268-0033(95)00046-1

    Article  CAS  Google Scholar 

  40. Barre A, Aissaoui R, Aminian K, Dumas R (2017) Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking. J Biomech 62:21–26. https://doi.org/10.1016/j.jbiomech.2017.04.036

    Article  PubMed  Google Scholar 

  41. Andersen MS, Damsgaard M, Rasmussen J, Ramsey DK, Benoit DL (2012) A linear soft tissue artefact model for human movement analysis: proof of concept using in vivo data. Gait Posture 35:606–611. https://doi.org/10.1016/j.gaitpost.2011.11.032

    Article  PubMed  Google Scholar 

  42. Bonci T, Camomilla V, Dumas R, Cheze L, Cappozzo A (2014) A soft tissue artefact model driven by proximal and distal joint kinematics. J Biomech 47:2354–2361. https://doi.org/10.1016/j.jbiomech.2014.04.029

    Article  Google Scholar 

  43. Begon M, Andersen MS, Dumas R (2018) Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodologycal review. J Biomech Eng 140:0308011–0308011. https://doi.org/10.1115/1.4038741

  44. Camomilla V, Bonci T, Cappozzo A (2017) Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements. J Biomech 62:14–20. https://doi.org/10.1016/j.jbiomech.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  45. Bonnet V, Richard V, Camomilla V, Venture G, Cappozzo A, Dumas R (2017) Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. J Biomech 62:148–155. https://doi.org/10.1016/j.jbiomech.2017.04.033

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Ababou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 74.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabat, M., Ababou, A., Ababou, N. et al. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement—a proof of concept. Med Biol Eng Comput 57, 2449–2460 (2019). https://doi.org/10.1007/s11517-019-02033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02033-7

Keywords