Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Precise segmentation of stroke lesions from brain magnetic resonance (MR) images poses a challenging task in automated diagnosis. In this paper, we proposed a new method called watershed-based lesion segmentation algorithm (WLSA), which is a novel intensity-based segmentation technique used to delineate infarct lesion in diffusion-weighted imaging (DWI) MR images of the brain. The algorithm was tested on a series of 142 real-time images collected from different stroke patients reported at IMS and SUM Hospital. One MRI slice having largest area of infract lesion is selected from each patient from multiple slices. The main objective is to combine the strength of guided filter and watershed transform through relative fuzzy connectedness (RFC) to detect lesion boundaries appropriately. The extracted informative statistical and geometrical features are used to classify the types of stroke lesions according to the Oxfordshire Community Stroke Project (OCSP) classification. The experimental results demonstrated the effectiveness of the proposed process with high accuracy in delineating lesions. A classification with a dice similarity index (DSI) of 96% with computational time of 0.06 s in random forest (RF) and an accuracy of 85% with computational time of 0.84 s has been obtained by multilayer perceptron (MLP) neural network classifier in tenfold cross-validation process. Better detection accuracy is achieved in RF classifier in classifying stroke lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams H, Adams R, Zoppo GD, Goldstein LB (2005) Guidelines for the early management of patients with ischemic stroke, 2005 guidelines update, a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke 36(4):916–921

    Article  PubMed  Google Scholar 

  2. Khademi A, Venetsanopoulos A, Moody AR (2012) Robust white matter lesion segmentation in FLAIR MRI. IEEE Trans Biomed Eng 59(3):860–871

    Article  PubMed  Google Scholar 

  3. Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ (2008) Lesion identification using unified segmentation-normalization models and fuzzy clustering. NeuroImage 41(4):1253–1266

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wilke M, de Haan B, Juenger H, Karnath HO (2011) Manual, semi-automated and automated delineation of chronic brain lesions: a comparison of methods. NeuroImage 56(4):2038–2046

    Article  PubMed  Google Scholar 

  5. MacIntosh BJ, Graham SJ (2013) Magnetic resonance imaging to visualize stroke and characterize stroke recovery: a review. Front Neurol 4:1–14

    Article  Google Scholar 

  6. Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME (1997) Clinical utility of diffusion weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41(5):574–580

    Article  CAS  PubMed  Google Scholar 

  7. Newcombe VF, Das T, Cross JJ (2013) Diffusion imaging in neurological disease. J Neurol 260(1):335–342

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki H, Toriwaki J (1991) Automatic segmentation of head MRI images by knowledge guided thresholding. Comput Med Imaging Graph 15(4):233–240

    Article  CAS  PubMed  Google Scholar 

  9. Lemieux L, Hagemann G, Krakow K, Woermann FG (1999) Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn Reson Med 42(1):127–135

    Article  CAS  PubMed  Google Scholar 

  10. Liu HT, Sheu TWH, Chang HH (2013) Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification. Med Biol Eng Comput 51(10):1091–1104

    Article  PubMed  Google Scholar 

  11. Przelaskowski A, Sklinda K, Bargieł P, Walecki J, Biesiadko-Matuszewsk M, Kazubeka M (2007) Improved early stroke detection: wavelet-based perception enhancement of computerized tomography exams. Comput Biol Med 37(4):524–533

    Article  CAS  PubMed  Google Scholar 

  12. Shahangian B, Pourghassem H (2016) Automatic brain haemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure, Biocybern. Biomed Eng 36(1): 217–232

  13. Amiri S, Movahedi MM, Kazemi K, Parsaei H (2016) 3D cerebral MR image segmentation using multiple-classifier system. Med Biol Eng Comput 55(3):353–364

    Article  PubMed  Google Scholar 

  14. Tek H, Aras HC (2004) Local watershed operators for image segmentation. In 7th Int Conf Medical Image Computing Computer-Assisted Intervention (MICCAI) pp 127–134

  15. Rodriguez R, Alarcon TE, Pacheco O (2005) A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method. Comput Biol Med 35(8):665–686

    Article  PubMed  Google Scholar 

  16. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transform, In E. R. Dougherty (Ed.). Mathematical Morphology In Image Processing 12:433–481

  17. Moga AN, Gabbouj M (1997) Parallel image component labelling with watershed transformation. IEEE Trans Pattern Anal Mach Intell 19(5):441–450

    Article  Google Scholar 

  18. Hagyard D, Razaz M, Atkin P (1996) Analysis of watershed algorithms for grayscale images. In Proc IEEE Int Conf Image Processing 41–44

  19. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Article  Google Scholar 

  20. Leventon M, Grimson W, Faugeras O (2000) Statistical shape influence in geodesic active contours. In Proc Comput Vis Pattern Recognition 1316–1323

  21. Karantzalos K, Argialas D (2006) Improving edge detection and watershed segmentation with anisotropic. Int J Remote Sens 27(24):5427–5434

    Article  Google Scholar 

  22. Benson CC, Lajish VL, Kumar R (2015) Brain tumor extraction from MRI brain images using marker based watershed algorithm. In Proc Int Conf on Advances in Computing. Communications and Informatics (ICACCI), 318–323

  23. Ardizzone E, Pirrone R, Gambino O (2004) Watershed based detection of multiple sclerosis lesions in MR images. WSEAS Trans Info Sci Appl 1(1):252–256

    Google Scholar 

  24. Warscotte V, Macq B, Thiran J, Michel C (1995) Accurate segmentation of 3-d magnetic resonance images of the head using a directional watershed transform. In IEEE Eng Med Biol Soc, 491-492

  25. Masoumia H, Behrad A, Pourmina MA, Roosta A (2012) Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network. Biomed Signal Process Control 7(5):429–437

    Article  Google Scholar 

  26. Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield SK (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458

    Article  CAS  PubMed  Google Scholar 

  27. Macenko M, Celenk M, Ma L, (2006) Lesion detection using morphological watershed segmentation and model based inverse filtering. In 18th Int Conf Pattern Recognition (ICPR06), 669–682

  28. Cousty J, Najman L, Couprie M, Clement-Guinaudeau S, Goissen T, Garot J (2010) Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image Vis Comput 28(8):1229–1243

    Article  Google Scholar 

  29. Letteboer MJ, Olsen OF, Dam EB, Willems PWA, Viergever MA, Niessen WJ (2004) Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Acad Radiol 11(10):1125–1138

    Article  PubMed  Google Scholar 

  30. Cates JE, Whitaker RT, Jones GM (2005) Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med Image Anal 9(6):566–578

    Article  PubMed  Google Scholar 

  31. Mahmood Q, Basit A (2016) Brain lesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Lect Notes Comput Sci:266–274

  32. Maier O, Schroder C, Forkert ND, Martinetz T, Handels H (2015) Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One:1–16

  33. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell B, Palmer S, Sharma G, Christensen S, Carey L (2014) Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98:324–335

    Article  PubMed  Google Scholar 

  34. Augustin M, Bammer R, Simbrunner J, Stollberger R, Hartung H, Fazekas F (2000) Diffusion-weighted imaging of patients with subacute cerebral ischemia: comparison with conventional contrast-enhanced MR imaging. AJNR Am J Neuroradiol 21(9):1596–1602

    CAS  PubMed  Google Scholar 

  35. Saha PK, Udupa JK (2001) Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput Vis Image Underst 82(1):42–56

    Article  Google Scholar 

  36. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  PubMed  Google Scholar 

  37. Beucher S, Lantuejoul C (1982) Use of watersheds in contour detection, in Proc. Int. Workshop Image Processing, Real-Time Edge and Motion Detection/Estimation, Fontainebleau, France

  38. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  39. Chen YQ, Nixon MS, David WT (1995) Statistical geometrical features for texture classification. Pattern Recogn 28(4):537–552

    Article  Google Scholar 

  40. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  41. Guo D, Fridriksson J, Fillmore P, Rorden C, Yu H, Zheng K, Wang S. (2015) Automated lesion detection on MRI scans using combined unsupervised and supervised methods. BMC Med Imaging 30:15–50

  42. Tsai JZ, Peng SJ, Chen YW, et al (2014) Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map. Biomed Res Int 1-14

  43. Prakash KB, Gupta V, Bilello M, Beauchamp NJ, Nowinski WL (2006) Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad Radiol 13(12):1474–1484

    Article  Google Scholar 

  44. Mah YH, Jager R, Kennard R, Husain M, Nachev P (2014) A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56(100):51–63

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muda AF, Saad NM, Abu-Bakar SAR, Muda AS, Abdullah AR (2015) Brain lesion segmentation using fuzzy C-means on diffusion-weighted imaging. ARPN J Eng Appl Sci 10:1138–1144

    Google Scholar 

  46. Wang Y, Katsaggelos AK, Wang X, Parrish TB (2016) A deep symmetry convnet for stroke lesion segmentation. In: IEEE Int. Conf. on Image Processing (ICIP), pp 111-115

  47. Seo H, Milanfar P (2009) A non-parametric approach to automatic change detection in MRI images of the brain. In IEEE Int Symp Biomed Imaging: From Nano to Macro, 245–248

  48. Purushotham A, Campbell BC, Straka M, Mlynash M, Olivot JM, Bammer R, Kemp SM, Albers GW, Lansberg MG (2015) Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke 10(3):348–353

    Article  PubMed  Google Scholar 

  49. Maier O, Wilms M, von der Gablentz KUM, Munte TF, Handels H (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the technicians of IMS & SUM Hospital, for providing the MRI images of stroke patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Sabut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subudhi, A., Jena, S. & Sabut, S. Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI. Med Biol Eng Comput 56, 795–807 (2018). https://doi.org/10.1007/s11517-017-1726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1726-7

Keywords

Navigation