Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study | Medical & Biological Engineering & Computing
Skip to main content

Advertisement

Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Interventional cardiologists still rely heavily on angiography for the evaluation of coronary lesion severity, despite its poor correlation with the presence of ischemia. In order to improve the accuracy of the current diagnostic procedures, an understanding of the relative influence of geometric characteristics on the induction of ischemia is required. This idea is especially important for coronary bifurcation lesions (CBLs), whose treatment is complex and is associated with high rates of peri- and post-procedural clinical events. Overall, it is unclear which geometric and morphological parameters of CBLs influence the onset of ischemia. More specifically, the effect of stenosis eccentricity is unknown. Computational fluid dynamic simulations, under a geometric multiscale framework, were executed for seven CBL configurations within the left main coronary artery bifurcation. Both concentric and eccentric stenosis profiles of mild to severe constriction were considered. By using a geometric multiscale framework, the fractional flow reserve, which is the gold-standard clinical diagnostic index, could be calculated and was compared between the eccentric and concentric profiles for each case. The results suggested that for configurations where the supplying vessel is stenosed, eccentricity could have a notable effect on and therefore be an important factor that influences configuration functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, Banuelos C, Zarco P (1994) Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 23(4):879–884. doi:10.1016/0735-1097(94)90632-7

    Article  CAS  PubMed  Google Scholar 

  2. Avanzolini G, Barbini P, Cappello A, Cevenini G (1988) CADCS simulation of the closed-loop cardiovascular system. Int J Biomed Comput 22(1):39–49. doi:10.1016/0020-7101(88)90006-2

    Article  CAS  PubMed  Google Scholar 

  3. Badak O, Schoenhagen P, Tsunoda T, Magyar WA, Coughlin J, Kapadia S, Nissen SE, Tuzcu EM (2003) Characteristics of atherosclerotic plaque distribution in coronary artery bifurcations: an intravascular ultrasound analysis. Coron Artery Dis 14(4):309–316. doi:10.1097/01.mca.0000076511.29238.f1

    PubMed  Google Scholar 

  4. Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G (2009) Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? Comput Methods Biomech Biomed Engin 12(1):113–123. doi:10.1080/10255840903080802

    Article  CAS  PubMed  Google Scholar 

  5. Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G, Modeling of Congenital Hearts Alliance I (2011) Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Phil Trans R Soc A 369(1954):4316–4330. doi:10.1098/rsta.2011.0130

    Article  CAS  PubMed  Google Scholar 

  6. Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, JD MC, Fearon WF, Barbato E, Tonino PA, De Bruyne B, Pijls NH, Oldroyd KG (2013) VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol 61(13):1421–1427. doi:10.1016/j.jacc.2012.09.065

    Article  PubMed  Google Scholar 

  7. Binu LS, Kumar AS (2012) Simulation of left main coronary bifurcation under different cases of stenosis and assessing the possibility of plaque proliferation using computational fluid dynamics. International Simulation Conference of India 2012

  8. Binu LS, Kumar AS (2012) Simulation of left main coronary bifurcation lesions using 3D computational fluid dynamics model and its comparison with 2D. World Congress on Engineering 2012:631

    Google Scholar 

  9. Brown BG, Bolson EL, Dodge HT (1984) Dynamic mechanisms in human coronary stenosis. Circulation 70(6):917–922. doi:10.1161/01.CIR.70.6.917

    Article  CAS  PubMed  Google Scholar 

  10. Chaichana T, Sun Z, Jewkes J (2012) Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images. Australas Phys Eng Sci Med 35(2):231–236. doi:10.1007/s13246-012-0135-3

    Article  PubMed  Google Scholar 

  11. Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of left coronary stenosis: a patient-specific analysis. Acta Bioeng Biomech 15(3):107–112. doi:10.5277/abb130313

    PubMed  Google Scholar 

  12. Chaichana T, Sun Z, Jewkes J (2013) Haemodynamic analysis of the effect of different types of plaques in the left coronary artery. Comput Med Imaging Graph 37(3):197–206. doi:10.1016/j.compmedimag.2013.02.001

    Article  PubMed  Google Scholar 

  13. Chaichana T, Sun Z, Jewkes J (2011) Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech 44(10):1869–1878. doi:10.1016/j.jbiomech.2011.04.033

    Article  PubMed  Google Scholar 

  14. Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of various types of stenosis in the left coronary artery bifurcation: a patient-specific analysis. Phys Med 29(5):447–452. doi:10.1016/j.ejmp.2013.02.001

    Article  PubMed  Google Scholar 

  15. Chaichana T, Sun Z, Jewkes J (2012) Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput Math Methods Med 2012. doi:10.1155/2012/504367

    PubMed  PubMed Central  Google Scholar 

  16. Chaichana T, Sun Z, Jewkes J (2014) Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Comput Methods Biomech Biomed Engin 17(2):108–118. doi:10.1080/10255842.2012.671308

    Article  PubMed  Google Scholar 

  17. Cho YI, Back LH, Crawford DW (1985) Effect of simulated hyperemia on the flow field in a mildly atherosclerotic coronary artery casting of man. Aviat Space Environ Med 56(3):212–219

    CAS  PubMed  Google Scholar 

  18. Choi G, Cheng CP, Wilson NM, Taylor CA (2009) Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann Biomed Eng 37(1):14–33. doi:10.1007/s10439-008-9590-0

    Article  PubMed  Google Scholar 

  19. Colombo A, Bramucci E, Sacca S, Violini R, Lettieri C, Zanini R, Sheiban I, Paloscia L, Grube E, Schofer J, Bolognese L, Orlandi M, Niccoli G, Latib A, Airoldi F (2009) Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation 119(1):71–78. doi:10.1161/CIRCULATIONAHA.108.808402

    Article  PubMed  Google Scholar 

  20. Daniels DV, van’t Veer M, Pijls NH, van der Horst A, Yong AS, De Bruyne B, Fearon WF (2012) The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease. J Am Coll Cardiol: Cardiovasc Interv 5(10):1021–1025. doi:10.1016/j.jcin.2012.07.005

    Article  Google Scholar 

  21. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92(1):39–46. doi:10.1161/01.CIR.92.1.39

    Article  CAS  PubMed  Google Scholar 

  22. De Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W (1996) Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 94(8):1842–1849. doi:10.1161/01.CIR.94.8.1842

    Article  CAS  PubMed  Google Scholar 

  23. Dodge JT Jr, Brown BG, Bolson EL, Dodge HT (1992) Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86(1):232–246. doi:10.1161/01.CIR.86.1.232

    Article  PubMed  Google Scholar 

  24. Esmaily Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL (2013) A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys 244(0):63–79. doi:10.1016/j.jcp.2012.07.035

    Article  Google Scholar 

  25. Ferrari M, Werner GS, Bahrmann P, Richartz BM, Figulla HR (2006) Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire. Cardiovasc Ultrasound 4:14. doi:10.1186/1476-7120-4-14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, Ragosta M (2002) Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 90(3):210–215. doi:10.1016/S0002-9149(02)02456-6

    Article  PubMed  Google Scholar 

  27. Frattolin J, Zarandi MM, Pagiatakis C, Bertrand OF, Mongrain R (2015) Numerical study of stenotic side branch hemodynamics in true bifurcation lesions. Comput Biol Med 57:130–138. doi:10.1016/j.compbiomed.2014.11.014

    Article  PubMed  Google Scholar 

  28. Gould K (1999) Coronary artery stenosis and reversing atherosclerosis. Arnold Publishers (Distributed in U.S. by Oxford University Press), London

  29. Gould KL, Kirkeeide R, Johnson NP (2010) Coronary branch steal: experimental validation and clinical implications of interacting stenosis in branching coronary arteries. Circ Cardiovasc Imag 3(6):701–709. doi:10.1161/CIRCIMAGING.110.937656

    Article  Google Scholar 

  30. Griffith MD, Leweke T, Thompson MC, Hourigan K (2013) Effect of small asymmetries on axisymmetric stenotic flow. J Fluid Mech 721:R1. doi:10.1017/jfm.2013.109

    Article  Google Scholar 

  31. Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, Nelis O, Bartunek J, Vanderheyden M, Wyffels E, Barbato E, Heyndrickx GR, Wijns W, De Bruyne B (2009) Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 120(15):1505–1512. doi:10.1161/CIRCULATIONAHA.109.850073

    Article  PubMed  Google Scholar 

  32. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Meth Fl 22(5):325–352. doi:10.1002/(Sici)1097-0363(19960315)22:5<325::Aid-Fld307>3.0.Co;2-Y

    Article  Google Scholar 

  33. Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F, Modeling of Congenital Hearts Alliance I (2011) Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 124(11 Suppl):S204–S210. doi:10.1161/CIRCULATIONAHA.110.010769

    Article  PubMed  Google Scholar 

  34. Huo Y, Kassab GS (2012) Intraspecific scaling laws of vascular trees. J R Soc Interface 9(66):190–200. doi:10.1098/rsif.2011.0270

    Article  PubMed  Google Scholar 

  35. Huo Y, Kassab GS (2009) The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys J 96(2):339–346. doi:10.1016/j.bpj.2008.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huo Y, Svendsen M, Choy JS, Zhang ZD, Kassab GS (2012) A validated predictive model of coronary fractional flow reserve. J R Soc Interface 9(71):1325–1338. doi:10.1098/rsif.2011.0605

    Article  PubMed  Google Scholar 

  37. Javadzadegan A, Shimizu Y, Behnia M, Ohta M (2013) Correlation between Reynolds number and eccentricity effect in stenosed artery models. Technol Health Care 21(4):357–367. doi:10.3233/THC-130736

    PubMed  Google Scholar 

  38. Javadzadegan A, Yong AS, Chang M, Ng AC, Yiannikas J, Ng MK, Behnia M, Kritharides L (2013) Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries. Am J Physiol Heart Circ Physiol 304(4):H559–H566. doi:10.1152/ajpheart.00428.2012

    Article  CAS  PubMed  Google Scholar 

  39. Jeon BJ, Kim J, Choi HG (2015) A finite element analysis of turbulent eccentric stenotic flows by large eddy simulation. J Mech Sci Technol 29(5):1869–1874. doi:10.1007/s12206-015-0407-4

    Article  Google Scholar 

  40. Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, Steinberg AM, Schar M, Texter JH, Wellnhofer E, Weiss RG, Stuber M (2011) Coronary artery distensibility assessed by 3.0 Tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardiol 108(4):491–497. doi:10.1016/j.amjcard.2011.03.078

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209. doi:10.1007/s10439-010-0083-6

    Article  CAS  PubMed  Google Scholar 

  42. Koo BK, Waseda K, Kang HJ, Kim HS, Nam CW, Hur SH, Kim JS, Choi D, Jang Y, Hahn JY, Gwon HC, Yoon MH, Tahk SJ, Chung WY, Cho YS, Choi DJ, Hasegawa T, Kataoka T, Oh SJ, Honda Y, Fitzgerald PJ, Fearon WF (2010) Anatomic and functional evaluation of bifurcation lesions undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 3(2):113–119. doi:10.1161/CIRCINTERVENTIONS.109.887406

    Article  PubMed  Google Scholar 

  43. Koo BK, Park KW, Kang HJ, Cho YS, Chung WY, Youn TJ, Chae IH, Choi DJ, Tahk SJ, Oh BH, Park YB, Kim HS (2008) Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J 29(6):726–732. doi:10.1093/eurheartj/ehn045

    Article  PubMed  Google Scholar 

  44. Lagana K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5):1129–1141. doi:10.1016/j.jbiomech.2004.05.027

    Article  PubMed  Google Scholar 

  45. Latib A, Colombo A (2008) Bifurcation disease: what do we know, what should we do? J Am Coll Cardiol: Cardiovasc Interv 1(3):218–226. doi:10.1016/j.jcin.2007.12.008

    Article  Google Scholar 

  46. Levy MN, Pappano AJ, Berne RM (2007) The cardiac pump. Cardiovascular physiology. Mosby Elsevier, Philadelphia, p 74

    Google Scholar 

  47. Li J, Elrashidi MY, Flammer AJ, Lennon RJ, Bell MR, Holmes DR, Bresnahan JF, Rihal CS, Lerman LO, Lerman A (2013) Long-term outcomes of fractional flow reserve-guided vs. angiography-guided percutaneous coronary intervention in contemporary practice. Eur Heart J 34(18):1375–1383. doi:10.1093/eurheartj/eht005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Louvard Y, Thomas M, Dzavik V, Hildick-Smith D, Galassi AR, Pan M, Burzotta F, Zelizko M, Dudek D, Ludman P, Sheiban I, Lassen JF, Darremont O, Kastrati A, Ludwig J, Iakovou I, Brunel P, Lansky A, Meerkin D, Legrand V, Medina A, Lefevre T (2008) Classification of coronary artery bifurcation lesions and treatments: time for a consensus! Catheter Cardiovasc Interv 71(2):175–183. doi:10.1002/ccd.21314

    Article  PubMed  Google Scholar 

  49. Maehara A, Mintz GS, Castagna MT, Pichard AD, Satler LF, Waksman R, Laird JR Jr, Suddath WO, Kent KM, Weissman NJ (2001) Intravascular ultrasound assessment of the stenoses location and morphology in the left main coronary artery in relation to anatomic left main length. Am J Cardiol 88(1):1–4. doi:10.1016/S0002-9149(01)01575-2

    Article  CAS  PubMed  Google Scholar 

  50. Mallinger F, Drikakis D (2002) Instability in three-dimensional, unsteady, stenotic flows. Int J Heat Fluid Fl 23(5):657–663. doi:10.1016/S0142-727x(02)00161-3

    Article  Google Scholar 

  51. Mantero S, Pietrabissa R, Fumero R (1992) The coronary bed and its role in the cardiovascular system: a review and an introductory single-branch model. J Biomed Eng 14(2):109–116. doi:10.1016/0141-5425(92)90015-D

    Article  CAS  PubMed  Google Scholar 

  52. Medina A, Suarez de Lezo J, Pan M (2006) A new classification of coronary bifurcation lesions. Rev Esp Cardiol 59(2):183. doi:10.1016/S1885-5857(06)60130-8

    Article  PubMed  Google Scholar 

  53. Medina A, Martin P, Suarez de Lezo J, Novoa J, Melian F, Hernandez E, Suarez de Lezo J, Pan M, Burgos L, Amador C, Morera O, Garcia A (2011) Ultrasound study of the prevalence of plaque at the carina in lesions that affect the coronary bifurcation. Implications for treatment with provisional stent. Rev Esp Cardiol 64(1):43–50. doi:10.1016/j.recesp.2010.07.006

    Article  PubMed  Google Scholar 

  54. Meimoun P, Sayah S, Luycx-Bore A, Boulanger J, Elmkies F, Benali T, Zemir H, Doutrelan L, Clerc J (2011) Comparison between non-invasive coronary flow reserve and fractional flow reserve to assess the functional significance of left anterior descending artery stenosis of intermediate severity. J Am Soc Echocardiogr 24(4):374–381. doi:10.1016/j.echo.2010.12.007

    Article  PubMed  Google Scholar 

  55. Melih Guleren K (2013) Numerical flow analysis of coronary arteries through concentric and eccentric stenosed geometries. J Biomech 46(6):1043–1052. doi:10.1016/j.jbiomech.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  56. Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39(6):1010–1020. doi:10.1016/j.jbiomech.2005.02.021

    Article  PubMed  Google Scholar 

  57. Mittal R, Simmons SP, Najjar F (2003) Numerical study of pulsatile flow in a constricted channel. J Fluid Mech 485:337–378. doi:10.1017/S002211200300449x

    Article  Google Scholar 

  58. Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) "Virtual" (computed) fractional flow reserve: current challenges and limitations. J Am Coll Cardiol: Cardiovasc Interv 8(8):1009–1017. doi:10.1016/j.jcin.2015.04.006

    Article  Google Scholar 

  59. Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, Gunn JP (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. J Am Coll Cardiol: Cardiovasc Interv 6(2):149–157. doi:10.1016/j.jcin.2012.08.024

    Article  Google Scholar 

  60. Natsumeda M, Nakazawa G, Murakami T, Torii S, Ijichi T, Ohno Y, Masuda N, Shinozaki N, Ogata N, Yoshimachi F (2015) Coronary angiographic characteristics that influence fractional flow reserve. Circ J. doi:10.1253/circj.CJ-14-0931

    Google Scholar 

  61. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Group NXTTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. doi:10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

  62. Opolski MP, Kepka C, Achenbach S, Pregowski J, Kruk M, Staruch AD, Kadziela J, Ruzyllo W, Witkowski A (2013) Advanced computed tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions. Eur J Radiol 83(1):135–141. doi:10.1016/j.ejrad.2013.10.005

  63. Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, Kubo T, Doi H, Templin B, Lansky AJ, Dangas G, Leon MB, Mehran R, Tahk SJ, Stone GW, Ochiai M, Moses JW (2010) Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located? Circ Cardiovasc Interv 3(2):105–112. doi:10.1161/Circinterventions.109.906016

    Article  PubMed  Google Scholar 

  64. Pagiatakis C, Tardif JC, L’Allier PL, Mongrain R (2015) A numerical investigation of the functionality of coronary bifurcation lesions with respect to lesion configuration and stenosis severity. J Biomech 48(12):3103–3111. doi:10.1016/j.jbiomech.2015.07.018

    Article  PubMed  Google Scholar 

  65. Papadopoulou SL, Girasis C, Gijsen FJ, Rossi A, Ottema J, van der Giessen AG, Schuurbiers JC, Garcia-Garcia HM, de Feyter PJ, Wentzel JJ (2014) A CT-based Medina classification in coronary bifurcations: does the lumen assessment provide sufficient information? Catheter Cardiovasc Interv 84(3):445–452. doi:10.1002/ccd.25496

    Article  PubMed  Google Scholar 

  66. Pietrabissa R, Mantero S, Marotta T, Menicanti L (1996) A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phys 18(6):477–484. doi:10.1016/1350-4533(96)00002-1

    Article  CAS  PubMed  Google Scholar 

  67. Pijls NH, Sels JW (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057. doi:10.1016/j.jacc.2011.09.077

    Article  PubMed  Google Scholar 

  68. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87(4):1354–1367. doi:10.1161/01.CIR.87.4.1354

    Article  CAS  PubMed  Google Scholar 

  69. Pijls NH (2013) Fractional flow reserve to guide coronary revascularization. Circ J 77(3):561–569. doi:10.1253/circj.CJ-13-0161

    Article  PubMed  Google Scholar 

  70. Pijls NH, De Bruyne B, Bech GJ, Liistro F, Heyndrickx GR, Bonnier HJ, Koolen JJ (2000) Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 102(19):2371–2377. doi:10.1161/01.CIR.102.19.2371

    Article  CAS  PubMed  Google Scholar 

  71. Pijls NHJ, Vangelder B, Vandervoort P, Peels K, Bracke FALE, Bonnier HJRM, Elgamal MIH (1995) Fractional flow reserve—a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood-flow. Circulation 92(11):3183–3193. doi:10.1161/01.CIR.92.11.3183

    Article  CAS  PubMed  Google Scholar 

  72. Poepping TL, Rankin RN, Holdsworth DW (2010) Flow patterns in carotid bifurcation models using pulsed Doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation. Ultrasound Med Biol 36(7):1125–1134. doi:10.1016/j.ultrasmedbio.2010.02.005

    Article  PubMed  Google Scholar 

  73. Prosi M, Perktold K, Ding Z, Friedman MH (2004) Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech 37(11):1767–1775. doi:10.1016/j.jbiomech.2004.01.021

    Article  PubMed  Google Scholar 

  74. Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci 4(2):111–124. doi:10.1007/s007910100063

    Article  Google Scholar 

  75. Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model Sim 1(2):173–195. doi:10.1137/S1540345902408482

    Article  Google Scholar 

  76. Ragosta M (2015) Left main coronary artery disease: importance, diagnosis, assessment, and management. Curr Probl Cardiol 40(3):93–126. doi:10.1016/j.cpcardiol.2014.11.003

    Article  PubMed  Google Scholar 

  77. Rodriguez-Granillo GA, Rosales MA, Degrossi E, Durbano I, Rodriguez AE (2007) Multislice CT coronary angiography for the detection of burden, morphology and distribution of atherosclerotic plaques in the left main bifurcation. Int J Cardiovasc Imaging 23(3):389–392. doi:10.1007/s10554-006-9144-1

    Article  PubMed  Google Scholar 

  78. Rubinshtein R, Lerman A, Spoon DB, Rihal CS (2012) Anatomic features of the left main coronary artery and factors associated with its bifurcation angle: a 3-dimensional quantitative coronary angiographic study. Catheter Cardiovasc Interv 80(2):304–309. doi:10.1002/ccd.23425

    Article  PubMed  Google Scholar 

  79. Sankaran S, Esmaily Moghadam M, Kahn AM, Tseng EE, Guccione JM, Marsden AL (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40(10):2228–2242. doi:10.1007/s10439-012-0579-3

    Article  PubMed  PubMed Central  Google Scholar 

  80. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33(6):1756–1824. doi:10.1161/01.CIR.99.17.2345

    Article  CAS  PubMed  Google Scholar 

  81. Segers P, Stergiopulos N, Westerhof N, Wouters P, Kolh P, Verdonck P (2003) Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Eng Math 47(3–4):185–199. doi:10.1023/B:Engi.0000007975.27377.9c

    Article  Google Scholar 

  82. Seiler C (2010) The human coronary collateral circulation. Eur J Clin Investig 40(5):465–476. doi:10.1111/j.1365-2362.2010.02282.x

    Article  Google Scholar 

  83. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402. doi:10.1016/j.jacc.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  84. Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 94(10):2497–2506. doi:10.1161/01.CIR.94.10.2497

    Article  CAS  PubMed  Google Scholar 

  85. Shaw JA, Kingwell BA, Walton AS, Cameron JD, Pillay P, Gatzka CD, Dart AM (2002) Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J Am Coll Cardiol 39(10):1637–1643. doi:10.1016/S0735-1097(02)01842-9

    Article  PubMed  Google Scholar 

  86. Sherwin SJ, Blackburn HM (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327. doi:10.1017/S0022112005004271

    Article  Google Scholar 

  87. Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100(3):250–255. doi:10.1161/01.CIR.100.3.250

    Article  CAS  PubMed  Google Scholar 

  88. Takashima H, Waseda K, Gosho M, Kurita A, Ando H, Sakurai S, Maeda K, Kumagai S, Suzuki A, Amano T (2015) Severity of morphological lesion complexity affects fractional flow reserve in intermediate coronary stenosis. J Cardiol 66(3):239–245. doi:10.1016/j.jjcc.2014.11.004

    Article  PubMed  Google Scholar 

  89. Toggweiler S, Urbanek N, Schoenenberger AW, Erne P (2010) Analysis of coronary bifurcations by intravascular ultrasound and virtual histology. Atherosclerosis 212(2):524–527. doi:10.1016/j.atherosclerosis.2010.06.045

    Article  CAS  PubMed  Google Scholar 

  90. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821. doi:10.1016/j.jacc.2009.11.096

    Article  PubMed  Google Scholar 

  91. Turgut O, Yilmaz A, Yalta K, Yilmaz BM, Ozyol A, Kendirlioglu O, Karadas F, Tandogan I (2007) Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation? Int J Cardiovasc Imaging 23(6):671–677. doi:10.1007/s10554-006-9186-4

    Article  PubMed  Google Scholar 

  92. Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281–318. doi:10.1017/S0022112007005836

    Article  Google Scholar 

  93. Varghese SS, Frankel SH, Fischer PF (2008) Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130(1):014503. doi:10.1115/1.2800832

    Article  PubMed  Google Scholar 

  94. Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Method Appl Mech Eng 195(29–32):3776–3796. doi:10.1016/j.cma.2005.04.014

    Article  Google Scholar 

  95. Wang JZ, Tie B, Welkowitz W, Kostis J, Semmlow J (1989) Incremental network analogue model of the coronary artery. Med Biol Eng Comput 27(4):416–422. doi:10.1007/BF02441434

    Article  CAS  PubMed  Google Scholar 

  96. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310(13):819–824. doi:10.1056/NEJM198403293101304

    Article  CAS  PubMed  Google Scholar 

  97. Williams MJ, Stewart RA, Low CJ, Wilkins GT (1999) Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study. Int J Card Imaging 15(4):287–294. doi:10.1023/A:1006279228534

    Article  CAS  PubMed  Google Scholar 

  98. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A (2014) 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619. doi:10.1093/eurheartj/ehu278

    Article  PubMed  Google Scholar 

  99. Yong AS, Daniels D, De Bruyne B, Kim HS, Ikeno F, Lyons J, Pijls NH, Fearon WF (2013) Fractional flow reserve assessment of left main stenosis in the presence of downstream coronary stenoses. Circ Cardiovasc Interv 6(2):161–165. doi:10.1161/CIRCINTERVENTIONS.112.000104

    Article  PubMed  Google Scholar 

  100. Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L (2011) Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J 32(3):345–353. doi:10.1093/eurheartj/ehq259

    Article  PubMed  Google Scholar 

  101. Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses—I. Steady flow. J Biomech 6(4):395–410. doi:10.1016/0021-9290(73)90099-7

    Article  CAS  PubMed  Google Scholar 

  102. Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses. II. Unsteady flow. J Biomech 6(5):547–559. doi:10.1016/0021-9290(73)90012-2

    Article  CAS  PubMed  Google Scholar 

  103. Zarandi M, Mongrain R, Bertrand O (2012) Determination of flow conditions in coronary bifurcation lesions in the context of the Medina classification. Model Simulat Eng; 2012(2012), DOI:10.1155/2012/419087

  104. Zhang JM, Zhong L, Luo T, Huo Y, Tan SY, Wong AS, Su B, Wan M, Zhao X, Kassab GS, Lee HP, Khoo BC, Kang CW, Ba T, Tan RS (2014) Numerical simulation and clinical implications of stenosis in coronary blood flow. Biomed Res Int 2014:514729. doi:10.1155/2014/514729

    PubMed  PubMed Central  Google Scholar 

  105. Zhu H, Ding Z, Piana RN, Gehrig TR, Friedman MH (2009) Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int J Cardiol 135(1):43–52. doi:10.1016/j.ijcard.2008.03.087

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Pagiatakis.

Ethics declarations

Funding

The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada Collaborative Health Research Projects grant (NSERC-CHRP grant no. 385833-10), the Canadian Institutes of Health Research grant (CIHR grant no. CPG-104292), and the McGill Engineering Doctoral Award. Dr. Tardif holds the Canada Research Chair in translational and personalized medicine and the Université de Montréal endowed research chair in atherosclerosis.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagiatakis, C., Tardif, JC., L’Allier, P.L. et al. Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study. Med Biol Eng Comput 55, 2079–2095 (2017). https://doi.org/10.1007/s11517-017-1653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1653-7

Keywords