Abstract
Interventional cardiologists still rely heavily on angiography for the evaluation of coronary lesion severity, despite its poor correlation with the presence of ischemia. In order to improve the accuracy of the current diagnostic procedures, an understanding of the relative influence of geometric characteristics on the induction of ischemia is required. This idea is especially important for coronary bifurcation lesions (CBLs), whose treatment is complex and is associated with high rates of peri- and post-procedural clinical events. Overall, it is unclear which geometric and morphological parameters of CBLs influence the onset of ischemia. More specifically, the effect of stenosis eccentricity is unknown. Computational fluid dynamic simulations, under a geometric multiscale framework, were executed for seven CBL configurations within the left main coronary artery bifurcation. Both concentric and eccentric stenosis profiles of mild to severe constriction were considered. By using a geometric multiscale framework, the fractional flow reserve, which is the gold-standard clinical diagnostic index, could be calculated and was compared between the eccentric and concentric profiles for each case. The results suggested that for configurations where the supplying vessel is stenosed, eccentricity could have a notable effect on and therefore be an important factor that influences configuration functionality.
Similar content being viewed by others
References
Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, Banuelos C, Zarco P (1994) Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 23(4):879–884. doi:10.1016/0735-1097(94)90632-7
Avanzolini G, Barbini P, Cappello A, Cevenini G (1988) CADCS simulation of the closed-loop cardiovascular system. Int J Biomed Comput 22(1):39–49. doi:10.1016/0020-7101(88)90006-2
Badak O, Schoenhagen P, Tsunoda T, Magyar WA, Coughlin J, Kapadia S, Nissen SE, Tuzcu EM (2003) Characteristics of atherosclerotic plaque distribution in coronary artery bifurcations: an intravascular ultrasound analysis. Coron Artery Dis 14(4):309–316. doi:10.1097/01.mca.0000076511.29238.f1
Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G (2009) Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? Comput Methods Biomech Biomed Engin 12(1):113–123. doi:10.1080/10255840903080802
Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G, Modeling of Congenital Hearts Alliance I (2011) Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Phil Trans R Soc A 369(1954):4316–4330. doi:10.1098/rsta.2011.0130
Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, JD MC, Fearon WF, Barbato E, Tonino PA, De Bruyne B, Pijls NH, Oldroyd KG (2013) VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol 61(13):1421–1427. doi:10.1016/j.jacc.2012.09.065
Binu LS, Kumar AS (2012) Simulation of left main coronary bifurcation under different cases of stenosis and assessing the possibility of plaque proliferation using computational fluid dynamics. International Simulation Conference of India 2012
Binu LS, Kumar AS (2012) Simulation of left main coronary bifurcation lesions using 3D computational fluid dynamics model and its comparison with 2D. World Congress on Engineering 2012:631
Brown BG, Bolson EL, Dodge HT (1984) Dynamic mechanisms in human coronary stenosis. Circulation 70(6):917–922. doi:10.1161/01.CIR.70.6.917
Chaichana T, Sun Z, Jewkes J (2012) Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images. Australas Phys Eng Sci Med 35(2):231–236. doi:10.1007/s13246-012-0135-3
Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of left coronary stenosis: a patient-specific analysis. Acta Bioeng Biomech 15(3):107–112. doi:10.5277/abb130313
Chaichana T, Sun Z, Jewkes J (2013) Haemodynamic analysis of the effect of different types of plaques in the left coronary artery. Comput Med Imaging Graph 37(3):197–206. doi:10.1016/j.compmedimag.2013.02.001
Chaichana T, Sun Z, Jewkes J (2011) Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech 44(10):1869–1878. doi:10.1016/j.jbiomech.2011.04.033
Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of various types of stenosis in the left coronary artery bifurcation: a patient-specific analysis. Phys Med 29(5):447–452. doi:10.1016/j.ejmp.2013.02.001
Chaichana T, Sun Z, Jewkes J (2012) Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput Math Methods Med 2012. doi:10.1155/2012/504367
Chaichana T, Sun Z, Jewkes J (2014) Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Comput Methods Biomech Biomed Engin 17(2):108–118. doi:10.1080/10255842.2012.671308
Cho YI, Back LH, Crawford DW (1985) Effect of simulated hyperemia on the flow field in a mildly atherosclerotic coronary artery casting of man. Aviat Space Environ Med 56(3):212–219
Choi G, Cheng CP, Wilson NM, Taylor CA (2009) Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann Biomed Eng 37(1):14–33. doi:10.1007/s10439-008-9590-0
Colombo A, Bramucci E, Sacca S, Violini R, Lettieri C, Zanini R, Sheiban I, Paloscia L, Grube E, Schofer J, Bolognese L, Orlandi M, Niccoli G, Latib A, Airoldi F (2009) Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation 119(1):71–78. doi:10.1161/CIRCULATIONAHA.108.808402
Daniels DV, van’t Veer M, Pijls NH, van der Horst A, Yong AS, De Bruyne B, Fearon WF (2012) The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease. J Am Coll Cardiol: Cardiovasc Interv 5(10):1021–1025. doi:10.1016/j.jcin.2012.07.005
De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92(1):39–46. doi:10.1161/01.CIR.92.1.39
De Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W (1996) Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 94(8):1842–1849. doi:10.1161/01.CIR.94.8.1842
Dodge JT Jr, Brown BG, Bolson EL, Dodge HT (1992) Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86(1):232–246. doi:10.1161/01.CIR.86.1.232
Esmaily Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL (2013) A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys 244(0):63–79. doi:10.1016/j.jcp.2012.07.035
Ferrari M, Werner GS, Bahrmann P, Richartz BM, Figulla HR (2006) Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire. Cardiovasc Ultrasound 4:14. doi:10.1186/1476-7120-4-14
Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, Ragosta M (2002) Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 90(3):210–215. doi:10.1016/S0002-9149(02)02456-6
Frattolin J, Zarandi MM, Pagiatakis C, Bertrand OF, Mongrain R (2015) Numerical study of stenotic side branch hemodynamics in true bifurcation lesions. Comput Biol Med 57:130–138. doi:10.1016/j.compbiomed.2014.11.014
Gould K (1999) Coronary artery stenosis and reversing atherosclerosis. Arnold Publishers (Distributed in U.S. by Oxford University Press), London
Gould KL, Kirkeeide R, Johnson NP (2010) Coronary branch steal: experimental validation and clinical implications of interacting stenosis in branching coronary arteries. Circ Cardiovasc Imag 3(6):701–709. doi:10.1161/CIRCIMAGING.110.937656
Griffith MD, Leweke T, Thompson MC, Hourigan K (2013) Effect of small asymmetries on axisymmetric stenotic flow. J Fluid Mech 721:R1. doi:10.1017/jfm.2013.109
Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, Nelis O, Bartunek J, Vanderheyden M, Wyffels E, Barbato E, Heyndrickx GR, Wijns W, De Bruyne B (2009) Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 120(15):1505–1512. doi:10.1161/CIRCULATIONAHA.109.850073
Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Meth Fl 22(5):325–352. doi:10.1002/(Sici)1097-0363(19960315)22:5<325::Aid-Fld307>3.0.Co;2-Y
Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F, Modeling of Congenital Hearts Alliance I (2011) Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 124(11 Suppl):S204–S210. doi:10.1161/CIRCULATIONAHA.110.010769
Huo Y, Kassab GS (2012) Intraspecific scaling laws of vascular trees. J R Soc Interface 9(66):190–200. doi:10.1098/rsif.2011.0270
Huo Y, Kassab GS (2009) The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys J 96(2):339–346. doi:10.1016/j.bpj.2008.09.038
Huo Y, Svendsen M, Choy JS, Zhang ZD, Kassab GS (2012) A validated predictive model of coronary fractional flow reserve. J R Soc Interface 9(71):1325–1338. doi:10.1098/rsif.2011.0605
Javadzadegan A, Shimizu Y, Behnia M, Ohta M (2013) Correlation between Reynolds number and eccentricity effect in stenosed artery models. Technol Health Care 21(4):357–367. doi:10.3233/THC-130736
Javadzadegan A, Yong AS, Chang M, Ng AC, Yiannikas J, Ng MK, Behnia M, Kritharides L (2013) Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries. Am J Physiol Heart Circ Physiol 304(4):H559–H566. doi:10.1152/ajpheart.00428.2012
Jeon BJ, Kim J, Choi HG (2015) A finite element analysis of turbulent eccentric stenotic flows by large eddy simulation. J Mech Sci Technol 29(5):1869–1874. doi:10.1007/s12206-015-0407-4
Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, Steinberg AM, Schar M, Texter JH, Wellnhofer E, Weiss RG, Stuber M (2011) Coronary artery distensibility assessed by 3.0 Tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardiol 108(4):491–497. doi:10.1016/j.amjcard.2011.03.078
Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209. doi:10.1007/s10439-010-0083-6
Koo BK, Waseda K, Kang HJ, Kim HS, Nam CW, Hur SH, Kim JS, Choi D, Jang Y, Hahn JY, Gwon HC, Yoon MH, Tahk SJ, Chung WY, Cho YS, Choi DJ, Hasegawa T, Kataoka T, Oh SJ, Honda Y, Fitzgerald PJ, Fearon WF (2010) Anatomic and functional evaluation of bifurcation lesions undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 3(2):113–119. doi:10.1161/CIRCINTERVENTIONS.109.887406
Koo BK, Park KW, Kang HJ, Cho YS, Chung WY, Youn TJ, Chae IH, Choi DJ, Tahk SJ, Oh BH, Park YB, Kim HS (2008) Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J 29(6):726–732. doi:10.1093/eurheartj/ehn045
Lagana K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5):1129–1141. doi:10.1016/j.jbiomech.2004.05.027
Latib A, Colombo A (2008) Bifurcation disease: what do we know, what should we do? J Am Coll Cardiol: Cardiovasc Interv 1(3):218–226. doi:10.1016/j.jcin.2007.12.008
Levy MN, Pappano AJ, Berne RM (2007) The cardiac pump. Cardiovascular physiology. Mosby Elsevier, Philadelphia, p 74
Li J, Elrashidi MY, Flammer AJ, Lennon RJ, Bell MR, Holmes DR, Bresnahan JF, Rihal CS, Lerman LO, Lerman A (2013) Long-term outcomes of fractional flow reserve-guided vs. angiography-guided percutaneous coronary intervention in contemporary practice. Eur Heart J 34(18):1375–1383. doi:10.1093/eurheartj/eht005
Louvard Y, Thomas M, Dzavik V, Hildick-Smith D, Galassi AR, Pan M, Burzotta F, Zelizko M, Dudek D, Ludman P, Sheiban I, Lassen JF, Darremont O, Kastrati A, Ludwig J, Iakovou I, Brunel P, Lansky A, Meerkin D, Legrand V, Medina A, Lefevre T (2008) Classification of coronary artery bifurcation lesions and treatments: time for a consensus! Catheter Cardiovasc Interv 71(2):175–183. doi:10.1002/ccd.21314
Maehara A, Mintz GS, Castagna MT, Pichard AD, Satler LF, Waksman R, Laird JR Jr, Suddath WO, Kent KM, Weissman NJ (2001) Intravascular ultrasound assessment of the stenoses location and morphology in the left main coronary artery in relation to anatomic left main length. Am J Cardiol 88(1):1–4. doi:10.1016/S0002-9149(01)01575-2
Mallinger F, Drikakis D (2002) Instability in three-dimensional, unsteady, stenotic flows. Int J Heat Fluid Fl 23(5):657–663. doi:10.1016/S0142-727x(02)00161-3
Mantero S, Pietrabissa R, Fumero R (1992) The coronary bed and its role in the cardiovascular system: a review and an introductory single-branch model. J Biomed Eng 14(2):109–116. doi:10.1016/0141-5425(92)90015-D
Medina A, Suarez de Lezo J, Pan M (2006) A new classification of coronary bifurcation lesions. Rev Esp Cardiol 59(2):183. doi:10.1016/S1885-5857(06)60130-8
Medina A, Martin P, Suarez de Lezo J, Novoa J, Melian F, Hernandez E, Suarez de Lezo J, Pan M, Burgos L, Amador C, Morera O, Garcia A (2011) Ultrasound study of the prevalence of plaque at the carina in lesions that affect the coronary bifurcation. Implications for treatment with provisional stent. Rev Esp Cardiol 64(1):43–50. doi:10.1016/j.recesp.2010.07.006
Meimoun P, Sayah S, Luycx-Bore A, Boulanger J, Elmkies F, Benali T, Zemir H, Doutrelan L, Clerc J (2011) Comparison between non-invasive coronary flow reserve and fractional flow reserve to assess the functional significance of left anterior descending artery stenosis of intermediate severity. J Am Soc Echocardiogr 24(4):374–381. doi:10.1016/j.echo.2010.12.007
Melih Guleren K (2013) Numerical flow analysis of coronary arteries through concentric and eccentric stenosed geometries. J Biomech 46(6):1043–1052. doi:10.1016/j.jbiomech.2013.02.001
Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39(6):1010–1020. doi:10.1016/j.jbiomech.2005.02.021
Mittal R, Simmons SP, Najjar F (2003) Numerical study of pulsatile flow in a constricted channel. J Fluid Mech 485:337–378. doi:10.1017/S002211200300449x
Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) "Virtual" (computed) fractional flow reserve: current challenges and limitations. J Am Coll Cardiol: Cardiovasc Interv 8(8):1009–1017. doi:10.1016/j.jcin.2015.04.006
Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, Gunn JP (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. J Am Coll Cardiol: Cardiovasc Interv 6(2):149–157. doi:10.1016/j.jcin.2012.08.024
Natsumeda M, Nakazawa G, Murakami T, Torii S, Ijichi T, Ohno Y, Masuda N, Shinozaki N, Ogata N, Yoshimachi F (2015) Coronary angiographic characteristics that influence fractional flow reserve. Circ J. doi:10.1253/circj.CJ-14-0931
Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Group NXTTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. doi:10.1016/j.jacc.2013.11.043
Opolski MP, Kepka C, Achenbach S, Pregowski J, Kruk M, Staruch AD, Kadziela J, Ruzyllo W, Witkowski A (2013) Advanced computed tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions. Eur J Radiol 83(1):135–141. doi:10.1016/j.ejrad.2013.10.005
Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, Kubo T, Doi H, Templin B, Lansky AJ, Dangas G, Leon MB, Mehran R, Tahk SJ, Stone GW, Ochiai M, Moses JW (2010) Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located? Circ Cardiovasc Interv 3(2):105–112. doi:10.1161/Circinterventions.109.906016
Pagiatakis C, Tardif JC, L’Allier PL, Mongrain R (2015) A numerical investigation of the functionality of coronary bifurcation lesions with respect to lesion configuration and stenosis severity. J Biomech 48(12):3103–3111. doi:10.1016/j.jbiomech.2015.07.018
Papadopoulou SL, Girasis C, Gijsen FJ, Rossi A, Ottema J, van der Giessen AG, Schuurbiers JC, Garcia-Garcia HM, de Feyter PJ, Wentzel JJ (2014) A CT-based Medina classification in coronary bifurcations: does the lumen assessment provide sufficient information? Catheter Cardiovasc Interv 84(3):445–452. doi:10.1002/ccd.25496
Pietrabissa R, Mantero S, Marotta T, Menicanti L (1996) A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phys 18(6):477–484. doi:10.1016/1350-4533(96)00002-1
Pijls NH, Sels JW (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057. doi:10.1016/j.jacc.2011.09.077
Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87(4):1354–1367. doi:10.1161/01.CIR.87.4.1354
Pijls NH (2013) Fractional flow reserve to guide coronary revascularization. Circ J 77(3):561–569. doi:10.1253/circj.CJ-13-0161
Pijls NH, De Bruyne B, Bech GJ, Liistro F, Heyndrickx GR, Bonnier HJ, Koolen JJ (2000) Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 102(19):2371–2377. doi:10.1161/01.CIR.102.19.2371
Pijls NHJ, Vangelder B, Vandervoort P, Peels K, Bracke FALE, Bonnier HJRM, Elgamal MIH (1995) Fractional flow reserve—a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood-flow. Circulation 92(11):3183–3193. doi:10.1161/01.CIR.92.11.3183
Poepping TL, Rankin RN, Holdsworth DW (2010) Flow patterns in carotid bifurcation models using pulsed Doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation. Ultrasound Med Biol 36(7):1125–1134. doi:10.1016/j.ultrasmedbio.2010.02.005
Prosi M, Perktold K, Ding Z, Friedman MH (2004) Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech 37(11):1767–1775. doi:10.1016/j.jbiomech.2004.01.021
Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci 4(2):111–124. doi:10.1007/s007910100063
Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model Sim 1(2):173–195. doi:10.1137/S1540345902408482
Ragosta M (2015) Left main coronary artery disease: importance, diagnosis, assessment, and management. Curr Probl Cardiol 40(3):93–126. doi:10.1016/j.cpcardiol.2014.11.003
Rodriguez-Granillo GA, Rosales MA, Degrossi E, Durbano I, Rodriguez AE (2007) Multislice CT coronary angiography for the detection of burden, morphology and distribution of atherosclerotic plaques in the left main bifurcation. Int J Cardiovasc Imaging 23(3):389–392. doi:10.1007/s10554-006-9144-1
Rubinshtein R, Lerman A, Spoon DB, Rihal CS (2012) Anatomic features of the left main coronary artery and factors associated with its bifurcation angle: a 3-dimensional quantitative coronary angiographic study. Catheter Cardiovasc Interv 80(2):304–309. doi:10.1002/ccd.23425
Sankaran S, Esmaily Moghadam M, Kahn AM, Tseng EE, Guccione JM, Marsden AL (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40(10):2228–2242. doi:10.1007/s10439-012-0579-3
Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33(6):1756–1824. doi:10.1161/01.CIR.99.17.2345
Segers P, Stergiopulos N, Westerhof N, Wouters P, Kolh P, Verdonck P (2003) Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Eng Math 47(3–4):185–199. doi:10.1023/B:Engi.0000007975.27377.9c
Seiler C (2010) The human coronary collateral circulation. Eur J Clin Investig 40(5):465–476. doi:10.1111/j.1365-2362.2010.02282.x
Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402. doi:10.1016/j.jacc.2011.11.003
Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 94(10):2497–2506. doi:10.1161/01.CIR.94.10.2497
Shaw JA, Kingwell BA, Walton AS, Cameron JD, Pillay P, Gatzka CD, Dart AM (2002) Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J Am Coll Cardiol 39(10):1637–1643. doi:10.1016/S0735-1097(02)01842-9
Sherwin SJ, Blackburn HM (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327. doi:10.1017/S0022112005004271
Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100(3):250–255. doi:10.1161/01.CIR.100.3.250
Takashima H, Waseda K, Gosho M, Kurita A, Ando H, Sakurai S, Maeda K, Kumagai S, Suzuki A, Amano T (2015) Severity of morphological lesion complexity affects fractional flow reserve in intermediate coronary stenosis. J Cardiol 66(3):239–245. doi:10.1016/j.jjcc.2014.11.004
Toggweiler S, Urbanek N, Schoenenberger AW, Erne P (2010) Analysis of coronary bifurcations by intravascular ultrasound and virtual histology. Atherosclerosis 212(2):524–527. doi:10.1016/j.atherosclerosis.2010.06.045
Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821. doi:10.1016/j.jacc.2009.11.096
Turgut O, Yilmaz A, Yalta K, Yilmaz BM, Ozyol A, Kendirlioglu O, Karadas F, Tandogan I (2007) Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation? Int J Cardiovasc Imaging 23(6):671–677. doi:10.1007/s10554-006-9186-4
Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281–318. doi:10.1017/S0022112007005836
Varghese SS, Frankel SH, Fischer PF (2008) Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130(1):014503. doi:10.1115/1.2800832
Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Method Appl Mech Eng 195(29–32):3776–3796. doi:10.1016/j.cma.2005.04.014
Wang JZ, Tie B, Welkowitz W, Kostis J, Semmlow J (1989) Incremental network analogue model of the coronary artery. Med Biol Eng Comput 27(4):416–422. doi:10.1007/BF02441434
White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310(13):819–824. doi:10.1056/NEJM198403293101304
Williams MJ, Stewart RA, Low CJ, Wilkins GT (1999) Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study. Int J Card Imaging 15(4):287–294. doi:10.1023/A:1006279228534
Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A (2014) 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619. doi:10.1093/eurheartj/ehu278
Yong AS, Daniels D, De Bruyne B, Kim HS, Ikeno F, Lyons J, Pijls NH, Fearon WF (2013) Fractional flow reserve assessment of left main stenosis in the presence of downstream coronary stenoses. Circ Cardiovasc Interv 6(2):161–165. doi:10.1161/CIRCINTERVENTIONS.112.000104
Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L (2011) Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J 32(3):345–353. doi:10.1093/eurheartj/ehq259
Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses—I. Steady flow. J Biomech 6(4):395–410. doi:10.1016/0021-9290(73)90099-7
Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses. II. Unsteady flow. J Biomech 6(5):547–559. doi:10.1016/0021-9290(73)90012-2
Zarandi M, Mongrain R, Bertrand O (2012) Determination of flow conditions in coronary bifurcation lesions in the context of the Medina classification. Model Simulat Eng; 2012(2012), DOI:10.1155/2012/419087
Zhang JM, Zhong L, Luo T, Huo Y, Tan SY, Wong AS, Su B, Wan M, Zhao X, Kassab GS, Lee HP, Khoo BC, Kang CW, Ba T, Tan RS (2014) Numerical simulation and clinical implications of stenosis in coronary blood flow. Biomed Res Int 2014:514729. doi:10.1155/2014/514729
Zhu H, Ding Z, Piana RN, Gehrig TR, Friedman MH (2009) Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int J Cardiol 135(1):43–52. doi:10.1016/j.ijcard.2008.03.087
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada Collaborative Health Research Projects grant (NSERC-CHRP grant no. 385833-10), the Canadian Institutes of Health Research grant (CIHR grant no. CPG-104292), and the McGill Engineering Doctoral Award. Dr. Tardif holds the Canada Research Chair in translational and personalized medicine and the Université de Montréal endowed research chair in atherosclerosis.
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Pagiatakis, C., Tardif, JC., L’Allier, P.L. et al. Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study. Med Biol Eng Comput 55, 2079–2095 (2017). https://doi.org/10.1007/s11517-017-1653-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-017-1653-7