A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps | Medical & Biological Engineering & Computing Skip to main content
Log in

A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The rupture of coronary atherosclerotic plaque fibrous caps has been associated with acute myocardial infarctions. Collagen fibers, the main structural component of vascular tissue, have been observed to change orientation and align themselves with the principal stress direction. This study compared the principal stress direction in stenosed coronary arteries obtained from 3D fluid–structure interaction simulations to the orientation of collagen fibers in the fibrous cap of human specimens. The principal stress direction at the peak of the stenosis was found to be axially oriented and correlated well with the determined orientation of the collagen fibers in the fibrous cap specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adiguzel E, Ahmad PJ, Franco C, Bendeck MP (2009) Collagens in the progression and complications of atherosclerosis. Vasc Med 14(1):73–89. doi:10.1177/1358863X08094801

    Article  PubMed  Google Scholar 

  2. Arts T, Costa KD, Covell JW, McCulloch AD (2001) Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 280(5):H2222–H2229

    CAS  PubMed  Google Scholar 

  3. Bancroft JD, Stevens A (1982) Theory and practice of histological techniques, 2nd edn. Churchill-Livingston, NY

    Google Scholar 

  4. Berne RM, Levy MN (1967) Cardiovascular physiology. Mosby, St. Louis

    Google Scholar 

  5. Cilla M, Pena E, Martinez MA (2012) 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech Model Mechanobiol 11(7):1001–1013. doi:10.1007/s10237-011-0369-0

    Article  CAS  PubMed  Google Scholar 

  6. Creane A, Maher E, Sultan S, Hynes N, Kelly D, Lally C (2011) Prediction of fibre architecture and adaptation in diseased carotid bifurcations. Biomech Model Mechanobiol 10(6):831–843. doi:10.1007/s10237-010-0277-8

    Article  PubMed  Google Scholar 

  7. Deguchi JO, Aikawa E, Libby P, Vachon JR, Inada M, Krane SM, Whittaker P, Aikawa M (2005) Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 112(17):2708–2715. doi:10.1161/CIRCULATIONAHA.105.562041

    Article  CAS  PubMed  Google Scholar 

  8. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231. doi:10.1074/jbc.M110709200

    Article  PubMed  Google Scholar 

  9. Dolla WJ, House JA, Marso SP (2012) Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Med Eng Phys 34(9):1330–1338. doi:10.1016/j.medengphy.2011.12.024

    Article  PubMed  Google Scholar 

  10. Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijens FP (2003) Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125(4):549–557

    Article  PubMed  Google Scholar 

  11. Driessen NJ, Wilson W, Bouten CV, Baaijens FP (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226(1):53–64

    Article  CAS  PubMed  Google Scholar 

  12. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  PubMed  Google Scholar 

  13. Finlay HM, McCullough L, Canham PB (1995) Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res 32(5):301–312

    CAS  PubMed  Google Scholar 

  14. Fujii K, Kobayashi Y, Mintz GS, Takebayashi H, Dangas G, Moussa I, Mehran R, Lansky AJ, Kreps E, Collins M, Colombo A, Stone GW, Leon MB, Moses JW (2003) Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 108(20):2473–2478. doi:10.1161/01.CIR.0000097121.95451.39

    Article  PubMed  Google Scholar 

  15. Fung YC (1991) What are the residual stresses doing in our blood vessels? Ann Biomed Eng 19(3):237–249

    Article  CAS  PubMed  Google Scholar 

  16. Galaz R, Pagiatakis C, Gaillard E, Mongrain R (2013) A parameterized analysis of the mechanical stress for coronary plaque fibrous caps. J Biomed Sci Eng 6:36–46. doi:10.4236/jbise.2013.612A006

    Article  Google Scholar 

  17. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35. doi:10.1098/rsif.2005.0073

    Article  PubMed Central  PubMed  Google Scholar 

  18. Giattina SD, Courtney BK, Herz PR, Harman M, Shortkroff S, Stamper DL, Liu B, Fujimoto JG, Brezinski ME (2006) Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 107(3):400–409. doi:10.1016/j.ijcard.2005.11.036

    Article  PubMed  Google Scholar 

  19. Hariton I, de Botton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3):163–175. doi:10.1007/s10237-006-0049-7

    Article  CAS  PubMed  Google Scholar 

  20. Hiro T, Fujii T, Yoshitake S, Kawabata T, Yasumoto K, Matsuzaki M (2000) Longitudinal visualization of spontaneous coronary plaque rupture by 3D intravascular ultrasound. Circulation 101(12):E114–E115

    Article  CAS  PubMed  Google Scholar 

  21. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5):H2048–H2058. doi:10.1152/ajpheart.00934.2004

    Article  CAS  PubMed  Google Scholar 

  22. Huang X, Yang C, Zheng J, Bach R, Muccigrosso D, Woodard PK, Tang D (2014) Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: a 3D FSI study based on ex vivo MRI of coronary plaques. J Biomech 47(2):432–437. doi:10.1016/j.jbiomech.2013.11.007

    Article  PubMed Central  PubMed  Google Scholar 

  23. Imoto K, Hiro T, Fujii T, Murashige A, Fukumoto Y, Hashimoto G, Okamura T, Yamada J, Mori K, Matsuzaki M (2005) Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J Am Coll Cardiol 46(8):1507–1515. doi:10.1016/j.jacc.2005.06.069

    Article  PubMed  Google Scholar 

  24. Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, Steinberg AM, Schar M, Texter JH, Wellnhofer E, Weiss RG, Stuber M (2011) Coronary artery distensibility assessed by 3.0 Tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardiol 108(4):491–497. doi:10.1016/j.amjcard.2011.03.078

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53(7):1552–1573. doi:10.1016/j.jmps.2005.03.002

    Article  CAS  Google Scholar 

  26. Kuhl E, Holzapfel G (2007) A continuum model for remodeling in living structures. J Mater Sci 42(21):8811–8823. doi:10.1007/s10853-007-1917-y

    Article  CAS  Google Scholar 

  27. Kunzelman KS, Cochran RP (1992) Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 7(1):71–78

    Article  CAS  PubMed  Google Scholar 

  28. Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2(3):326–340

    CAS  PubMed  Google Scholar 

  29. Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL (2012) Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech 45(5):790–798. doi:10.1016/j.jbiomech.2011.11.019

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li LP, Cheung JT, Herzog W (2009) Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput 47(6):607–615. doi:10.1007/s11517-009-0469-5

    Article  CAS  PubMed  Google Scholar 

  31. Li ZY, Howarth SP, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke J Cereb Circ 37(5):1195–1199. doi:10.1161/01.STR.0000217331.61083.3b

    Article  Google Scholar 

  32. Liang X, Xenos M, Alemu Y, Rambhia SH, Lavi I, Kornowski R, Gruberg L, Fuchs S, Einav S, Bluestein D (2013) Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid–structure interaction studies. Coron Artery Dis 24(2):75–87. doi:10.1097/MCA.0b013e32835bbe99

    Article  PubMed  Google Scholar 

  33. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488. doi:10.1161/CIRCULATIONAHA.105.537878

    Article  PubMed  Google Scholar 

  34. Little JS, Khalsa PS (2005) Material properties of the human lumbar facet joint capsule. J Biomech Eng 127(1):15–24

    Article  PubMed Central  PubMed  Google Scholar 

  35. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858

    Article  CAS  PubMed  Google Scholar 

  36. Mates RE, Gupta RL, Bell AC, Klocke FJ (1978) Fluid dynamics of coronary artery stenosis. Circ Res 42(1):152–162

    Article  CAS  PubMed  Google Scholar 

  37. Noorlander ML, Melis P, Jonker A, Van Noorden CJ (2002) A quantitative method to determine the orientation of collagen fibers in the dermis. J Histochem Cytochem 50(11):1469–1474

    Article  CAS  PubMed  Google Scholar 

  38. Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996. doi:10.1152/ajpheart.00018.2007

    Article  CAS  PubMed  Google Scholar 

  39. Rekhter MD, Zhang K, Narayanan AS, Phan S, Schork MA, Gordon D (1993) Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol 143(6):1634–1648

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Sethuraman S, Amirian JH, Litovsky SH, Smalling RW, Emelianov SY (2007) Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging. Opt Express 15(25):16657–16666

    Article  CAS  PubMed  Google Scholar 

  41. Shaw JA, Kingwell BA, Walton AS, Cameron JD, Pillay P, Gatzka CD, Dart AM (2002) Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J Am Coll Cardiol 39(10):1637–1643

    Article  PubMed  Google Scholar 

  42. Sheehan DC, Hrapchak BB (1980) Theory and practice of histotechnology, 2nd edn. Mosby, St. Louis

    Google Scholar 

  43. Sokolis DP (2008) Passive mechanical properties and constitutive modeling of blood vessels in relation to microstructure. Med Biol Eng Comput 46(12):1187–1199. doi:10.1007/s11517-008-0362-7

    Article  PubMed  Google Scholar 

  44. Sokolis DP, Sassani S, Kritharis EP, Tsangaris S (2011) Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy. Med Biol Eng Comput 49(8):867–879. doi:10.1007/s11517-011-0784-5

    Article  PubMed  Google Scholar 

  45. Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, Zheng J, Woodard PK, Yuan C (2009) Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid–structure interaction study. Stroke J Cereb Circ 40(10):3258–3263. doi:10.1161/STROKEAHA.109.558676

    Article  Google Scholar 

  46. Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C (2005) Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng 127(7):1185–1194

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32(7):947–960

    Article  PubMed  Google Scholar 

  48. Tremblay D, Zigras T, Cartier R, Leduc L, Butany J, Mongrain R, Leask RL (2009) A comparison of mechanical properties of materials used in aortic arch reconstruction. Ann Thorac Surg 88(5):1484–1491. doi:10.1016/j.athoracsur.2009.07.023

    Article  PubMed  Google Scholar 

  49. Valenta J, Svoboda J, Valerianova D, Vitek K (1999) Residual strain in human atherosclerotic coronary arteries and age related geometrical changes. Bio-Med Mater Eng 9(5–6):311–317

    CAS  Google Scholar 

  50. Valentin A, Humphrey JD (2009) Modeling effects of axial extension on arterial growth and remodeling. Med Biol Eng Comput 47(9):979–987. doi:10.1007/s11517-009-0513-5

    Article  PubMed Central  PubMed  Google Scholar 

  51. Virmani RB, Burke AP, Farb A, Kolodgie FD (2002) Clinical and pathological correlates. In: Brown DL (ed) Cardiovascular plaque rupture, chap 2, vol 45. Marcel Dekker Publishers Inc, New York

  52. Waksman RS, Serruys PW (2004) Handbook of the vulnerable plaque. Martin Dunitz, New York

  53. WHO (2012) Cardiovascular diseases (CVDS). http://www.who.int/mediacenter/factsheets/fs317/en/index.html

  54. Yang C, Bach RG, Zheng J, Naqa IE, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Bio-med Eng 56(10):2420–2428. doi:10.1109/TBME.2009.2025658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaire Mongrain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagiatakis, C., Galaz, R., Tardif, JC. et al. A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps. Med Biol Eng Comput 53, 545–555 (2015). https://doi.org/10.1007/s11517-015-1257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1257-z

Keywords

Navigation