Effect of ECG-derived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions | Medical & Biological Engineering & Computing Skip to main content
Log in

Effect of ECG-derived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Ventricular repolarization dynamics is an important predictor of the outcome in cardiovascular diseases. Mathematical modeling of the heart rate variability (RR interval variability) and ventricular repolarization variability (QT interval variability) is one of the popular methods to understand the dynamics of ventricular repolarization. Although ECG derived respiration (EDR) was previously suggested as a surrogate of respiration, but the effect of respiratory movement on ventricular repolarization dynamics was not studied. In this study, the importance of considering the effect of respiration and the validity of using EDR as a surrogate of respiration for linear parametric modeling of ventricular repolarization variability is studied in two cases with different physiological and psychological conditions. In the first case study, we used 20 young and 20 old healthy subjects’ ECG and respiration data from Fantasia database at Physionet to analyze a bivariate QT–RR and a trivariate \({\text{QT}}{-}{\text{RR}}{-}{\text{RESP}}\,{\text{or}}\,{\text{QT}}{-}{\text{RR}}{-}{\text{EDR}}\) model structure to study the aging effect on cardiac repolarization variability. In the second study, we used 16 healthy subjects’ data from drivedb (stress detection for automobile drivers) database at Physionet to do the same analysis for different psychological condition (i.e., in stressed and no stress condition). The results of our study showed that model having respiratory information (QT–RR–RESP and QT–RR–EDR) gave significantly better fit value (p < 0.05) than that of found from the QT–RR model. EDR showed statistically similar (p > 0.05) performance as that of respiration as an exogenous model input in describing repolarization variability irrespective of age and different mental conditions. Another finding of our study is that both respiration and EDR-based models can significantly (p < 0.05) differentiate the ventricular repolarization dynamics between healthy subjects of different age groups and with different psychological conditions, whereas models without respiration or EDR cannot distinguish between the groups. These results established the importance of using respiration and the validity of using EDR as a surrogate of respiration in the absence of respiration signal recording in linear parametric modeling of ventricular repolarization variability in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19(6):716–723

    Article  Google Scholar 

  2. Almeida R, Gouveia S, Rocha AP, Pueyo E, Martinez JP, Laguna P (2006) QT variability and HRV interactions in ECG: quantification and reliability. IEEE trans biomed eng 53(7):1317–1329. doi:10.1109/TBME.2006.873682

    Article  PubMed  Google Scholar 

  3. Bailon R, Sornmo L, Laguna P (2006) A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE trans biomed eng 53(7):1273–1285. doi:10.1109/TBME.2006.871888

    Article  PubMed  Google Scholar 

  4. Berntson GG, Cacioppo JT, Quigley KS (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30(2):183–196

    Article  PubMed  CAS  Google Scholar 

  5. Boyle J, Bidargaddi N, Sarela A, Karunanithi M (2009) Automatic detection of respiration rate from ambulatory single-lead ECG. IEEE trans inform technol biomed publ IEEE Eng Med Biol Soc 13(6):890–896. doi:10.1109/TITB.2009.2031239

    Article  Google Scholar 

  6. Clifford G, McSharry P, Tarassenko L (2002) Characterizing artefact in the normal human 24-hour RR time series to aid identification and artificial replication of circadian variations in human beat to beat heart rate using a simple threshold, Computers in Cardiology, IEEE Computer Society press, 29:129–132

  7. de Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P, O’Malley M (2003) Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE trans biomed eng 50(6):686–696. doi:10.1109/TBME.2003.812203

    Article  PubMed  Google Scholar 

  8. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  PubMed  CAS  Google Scholar 

  9. Hanson B, Gill J, Western D, Gilbey MP, Bostock J, Boyett MR, Zhang H, Coronel R, Taggart P (2012) Cyclical modulation of human ventricular repolarization by respiration. Front physiol 3:379. doi:10.3389/fphys.2012.00379

    Article  PubMed  PubMed Central  Google Scholar 

  10. Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks using physiological sensors. Intell Transp Syst IEEE Trans 6(2):156–166

    Article  Google Scholar 

  11. Huikuri HV, Valkama JO, Airaksinen KEJ, Seppanen T, Kessler KM, Takkunen JT, Myerburg RJ (1993) Frequency-domain measures of heart-rate-variability before the onset of nonsustained and sustained ventricular-tachycardia in patients with coronary-artery disease. Circulation 87(4):1220–1228

    Article  PubMed  CAS  Google Scholar 

  12. Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA (1996) Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol Reg I 271(4):R1078–R1084

    CAS  Google Scholar 

  13. Kaushal P, Taylor JA (2002) Inter-relations among declines in arterial distensibility, baroreflex function and respiratory sinus arrhythmia. J Am Coll Cardiol 39(9):1524–1530. doi:10.1016/S0735-1097(02)01787-4

    Article  PubMed  Google Scholar 

  14. Khaled ZB, Farges G (1992) First approach for respiratory monitoring by amplitude demodulation of the electrocardiogram. In: Proceedings of the 14th annual international conference of the IEEE engineering in medicine and biology society, vol 6, pp 2535–2536. doi:10.1109/IEMBS.1992.5761575

  15. Khandoker AH, Karmakar CK, Palaniswami M (2009) Automated recognition of patients with obstructive sleep apnoea using wavelet-based features of electrocardiogram recordings. Comput Biol Med 39(1):88–96. doi:10.1016/j.compbiomed.2008.11.003

    Article  PubMed  Google Scholar 

  16. Lampert R, Shusterman V, Burg MM, Lee FA, Earley C, Goldberg A, McPherson CA, Batsford WP, Soufer R (2005) Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors. J Cardiovasc Electr 16(4):372–377. doi:10.1046/j.1540-8167.2005.40580.x

    Article  Google Scholar 

  17. Lennart L (1999) System identification: theory for the user. Prentice Hall PTR, USA

    Google Scholar 

  18. Lombardi F, Sandrone G, Porta A, Torzillo D, Terranova G, Baselli G, Cerutti S, Malliani A (1996) Spectral analysis of short term R-Tapex interval variability during sinus rhythm and fixed atrial rate. Eur Heart J 17(5):769–778

    Article  PubMed  CAS  Google Scholar 

  19. Malik M, Hnatkova K, Novotny T, Schmidt G (2008) Subject-specific profiles of QT/RR hysteresis. Am J Physiol Heart Circ Physiol 295(6):H2356–H2363. doi:10.1152/ajpheart.00625.2008

    Article  PubMed  CAS  Google Scholar 

  20. Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, Goldberger AL (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol IEEE Comput Soc press 13:507–510

    Google Scholar 

  21. Noriega M, Martinez JP, Laguna P, Bailon R, Almeida R (2012) Respiration effect on wavelet-based ECG T-wave end delineation strategies. IEEE trans biomed eng 59(7):1818–1828. doi:10.1109/TBME.2011.2157824

    Article  PubMed  Google Scholar 

  22. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. Biomed Eng IEEE Trans 3:230–236

    Article  Google Scholar 

  23. Piccirillo G, Cacciafesta M, Lionetti M, Nocco M, Di Giuseppe V, Moise A, Naso C, Marigliano V (2001) Influence of age, the autonomic nervous system and anxiety on QT-interval variability. Clin Sci 101(4):429–438. doi:10.1042/Cs20000310

    Article  PubMed  CAS  Google Scholar 

  24. Porta A, Baselli G, Caiani E, Malliani A, Lombardi F, Cerutti S (1998) Quantifying electrocardiogram RT-RR variability interactions. Med Biol Eng Comput 36(1):27–34. doi:10.1007/Bf02522854

    Article  PubMed  CAS  Google Scholar 

  25. Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE trans biomed eng 54(1):94–106. doi:10.1109/TBME.2006.883789

    Article  PubMed  Google Scholar 

  26. Porta A, Tobaldini E, Gnecchi-Ruscone T, Montano N (2010) RT variability unrelated to heart period and respiration progressively increases during graded head-up tilt. Am J Physiol Heart Circ Physiol 298(5):H1406–H1414. doi:10.1152/ajpheart.01206.2009

    Article  PubMed  CAS  Google Scholar 

  27. Simonson E, Baker C, Burns N, Keiper C, Schmitt OH, Stackhou S (1968) Cardiovascular stress (electrocardiographic changes) produced by driving an automobile. Am Heart J 75(1):125–135. doi:10.1016/0002-8703(68)90123-3

    Article  PubMed  CAS  Google Scholar 

  28. Taggart P, Batchvarov VN, Sutton P, Young G, Young S, Patterson D (2009) Repolarization changes induced by mental stress in normal subjects and patients with coronary artery disease: effect of nitroglycerine. Psychosom Med 71(1):23–29. doi:10.1097/Psy.0b013e31818a1d56

    Article  PubMed  Google Scholar 

  29. Taggart P, Sutton P, Redfern C, Batchvarov VN, Hnatkova K, Malik M, James U, Joseph A (2005) The effect of mental stress on the non-dipolar components of the T wave: modulation by hypnosis. Psychosom Med 67(3):376–383. doi:10.1097/01.psy.0000160463.10583.88

    Article  PubMed  Google Scholar 

  30. Yamada A, Hayano J, Horie K, Ieda K, Mukai S, Yamada M, Fujinami T (1993) Regulation of QT interval during postural transitory changes in heart rate in normal subjects. Am J Cardiol 71(11):996–998

    Article  PubMed  CAS  Google Scholar 

  31. Zarrini M, Sadr A (2009) Detecting T-wave using separated beats by adaptive threshold. Second International Conference on Computer and Electrical Engineering, ICCEE’09 1:323–326

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imam, M.H., Karmakar, C.K., Khandoker, A.H. et al. Effect of ECG-derived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions. Med Biol Eng Comput 52, 851–860 (2014). https://doi.org/10.1007/s11517-014-1188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1188-0

Keywords

Navigation