Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Although anisotropic diffusion filters have been used extensively and with great success in medical image denoising, one limitation of this iterative approach, when used on fully automatic medical image processing schemes, is that the quality of the resulting denoised image is highly dependent on the number of iterations of the algorithm. Using many iterations may excessively blur the edges of the anatomical structures, while a few may not be enough to remove the undesirable noise. In this work, a mathematical model is proposed to automatically determine the number of iterations of the robust anisotropic diffusion filter applied to the problem of denoising three common human brain magnetic resonance (MR) images (T1-weighted, T2-weighted and proton density). The model is determined off-line by means of the maximization of the mean structural similarity index, which is used in this work as metric for quantitative assessment of the resulting processed images obtained after each iteration of the algorithm. After determining the model parameters, the optimal number of iterations of the algorithm is easily determined without requiring any extra computation time. The proposed method was tested on 3D synthetic and clinical human brain MR images and the results of qualitative and quantitative evaluation have shown its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu S, Ruan Q, Wang W, Li Y (2006) Adaptive anisotropic diffusion for ultrasonic image denoising and edge enhancement. Int J Info Commun Eng 2(8):562–570

    Google Scholar 

  2. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  3. Gerig G, Kubler O, Kikinis R, Jolesz F (1992) Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging 11(2):221–232

    Article  PubMed  CAS  Google Scholar 

  4. Black M, Sapiro G, Marimont D, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  PubMed  CAS  Google Scholar 

  5. Weickert J (1999) Coherence-enhancing diffusion of colour images. Image Vis Comput 17(3):201–212

    Article  Google Scholar 

  6. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  PubMed  Google Scholar 

  7. Wang Z, Bovik A (2009) Mean squared error: love it or leave it? IEEE Signal Process Magn 26(1):98–117

    Article  Google Scholar 

  8. Solo V (2005) A fast automatic stopping criterion for anisotropic diffusion. In: Proceedings of IEEE international conference on acoustics speech and signal, Orlando, 2002, pp 1661–1664

  9. Mrazek P, Navara M (2003) Selection of optimal stopping time for nonlinear diffusion filtering. Int J Comput Vis 2(3):189–203

    Article  Google Scholar 

  10. Papandreou G, Maragos P (2005) A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion. In: Proceedings of the conference on computer vision and pattern recognition (CVPR), San Diego, 625–630

  11. Barcelos C, Boaventura M, Silva-Jr E (2005) Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters. Comput App Math 24(1):131–150

    Google Scholar 

  12. Rinne H (2009) The Weibull distribution: a handbook, Chapman and Hall/CRC, Boca Raton

  13. Aubert-Broche B, Griffin M, Pike G, Evans A, Collins D (2006) Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans Med Imaging 25(11):1410–1416

    Article  PubMed  Google Scholar 

  14. Macovski A. (1996) Noise in MRI. Magn Reson Med 36(3):494–497

    Article  PubMed  CAS  Google Scholar 

  15. Wright G (1997) Magnetic resonance imaging. Signal Process Magn 14(1):56–66

    Article  Google Scholar 

  16. Henkelman R (1985) Measurement of sinal intensities in the presence of noise in MR images. Med Phys 12(2):232–233

    Article  PubMed  CAS  Google Scholar 

  17. Gonzales RC, Wintz P (1987) Digital image processing (2nd edn), Addison-Wesley Longman Publishing Co., Inc., Boston

  18. Sijbers J, den Dekker A, Scheunders P, Dyck D (1998) Maximum-likelihood estimation of rician distribution parameters. IEEE Trans Med Imaging 17(3):357–361

    Article  PubMed  CAS  Google Scholar 

  19. Coupé P, Manjón J, Gedamu E, Arnold D, Robles M, Collins D (2010) Robust rician noise estimation for MR images. Med Image Anal 14(4):483–493

    Article  PubMed  Google Scholar 

  20. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans. Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  21. Hoaglin D, Mosteller F, Tukey J (Eds) (1983) Understanding robust and exploratory data analysis, Wiley series in probability and mathematical statistics. Wiley-Interscience, New York

  22. Witkin A (1984) Scale-space filtering: a new approach to multi-scale description. In: Acoustics, speech, and signal processing. IEEE international conference on ICASSP ‘84, 9:150–153

  23. Black M, Sapiro G, Marimont D, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  PubMed  CAS  Google Scholar 

  24. Manjón J, Carbonell-Caballero J, Lull J, García-Martí G, Martí-Bonmatí L, Robles M (2008) Mri denoising using non local means. Med Image Anal 12(4):514–523.

    Google Scholar 

  25. Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M (2010) Adaptive non-local means denoising of mr images with spatially varying noise levels. J Magn Reson Imaging 31(1):192–203

    Article  PubMed  Google Scholar 

  26. Anand C, Sahambi J (2010) Wavelet domain non-linear filtering for mri denoising. Magn Reson Imaging Clin N Am 28(6):842–861

    Article  PubMed  Google Scholar 

  27. Wang Y, Che X, Ma S (2012) Nonlinear filtering based on 3d wavelet transform for mri denoising. EURASIP J Adv Signal Process 40:1–14

    Google Scholar 

Download references

Acknowledgments

The author is thankful to the Associate Editor and the reviewers, and to his colleague Mario Leziér, PhD, Professor, for all very valuable comments and references that helped to improve the paper. The author also expresses his gratitude to the all team from brain-development.org @ imperial college (http://www.brain-development.org/) for providing clinical MR images for this study. This work received financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-processes numbers: 2008/09050-2 and 2012/03100-3), and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-process number: 300803/2009-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Ferrari.

Additional information

Grants or other notes about the article that should go on the front page should be placed here. General acknowledgments should be placed at the end of the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, R.J. Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Med Biol Eng Comput 51, 71–88 (2013). https://doi.org/10.1007/s11517-012-0971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0971-z

Keywords

Navigation