Modeling effects of axial extension on arterial growth and remodeling | Medical & Biological Engineering & Computing Skip to main content
Log in

Modeling effects of axial extension on arterial growth and remodeling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Diverse mechanical perturbations elicit arterial growth and remodeling responses that appear to optimize structure and function so as to promote mechanical homeostasis. For example, it is well known that functional adaptations to sustained changes in transmural pressure and blood flow primarily affect wall thickness and caliber to restore circumferential and wall shear stresses toward normal. More recently, however, it has been shown that changes in axial extension similarly prompt dramatic cell and matrix reorganization and turnover, resulting in marked changes in unloaded geometry and mechanical behavior that presumably restore axial stress toward normal. Because of the inability to infer axial stress from in vivo measurements, simulations are needed to examine this hypothesis and to guide the design of future experiments. In this paper, we show that a constrained mixture model predicts salient features of observed responses to step increases in axial extension, including marked increases in fibrous constituent production, leading to a compensatory lengthening that restores original mechanical behavior. Because axial extension can be modified via diverse surgical procedures, including bypass operations, and exploited in tissue regeneration research, there is a need for increased attention to this important aspect of arterial biomechanics and mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We are saddened to acknowledge the untimely passing of Prof. B. L. Langille (October 29, 2008), a true pioneer in studies of arterial adaptation.

References

  1. Baek S, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128(1):142–149. ISSN 0148-0731 (Print). doi:10.1115/1.2132374

    Google Scholar 

  2. Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. constitutive relations and model simulations. Ann Biomed Eng 35(9):1498–1509. ISSN 0090-6964 (Print). doi:10.1007/s10439-007-9322-x

    Google Scholar 

  3. Cardamone L, Valentín A, Eberth JF, Humphrey JD (2009) Origin of axial prestretch and residual stress in arteries. Biomech Model Mechanobiol (in press)

  4. Dajnowiec D, Langille BL (2007) Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin Sci (Lond) 113(1):15–23. ISSN 1470-8736 (Electronic). doi:10.1042/CS20060337

    Google Scholar 

  5. Dorrington K, McCrum N (1977) Elastin as a rubber. Biopolymers 16(6):1201–1222. doi:10.1002/bip.1977.360160604

    Article  Google Scholar 

  6. Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Meth Appl Mech Eng. doi:10.1016/j.cma.2008.09.013. (in press)

  7. Gleason RL, Humphrey JD (2005) Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J Biomech 38(6):1255–1261. doi:10.1016/j.jbiomech.2004.06.017

    Google Scholar 

  8. Gleason RL, Taber LA, Humphrey JD (2004) A 2-d model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J Biomech Eng 126(3):371–381. doi:10.1115/1.1762899

    Article  Google Scholar 

  9. Gleason RL, Wilson E, Humphrey JD (2007) Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J Biomech 40(4):766–776. ISSN 0021-9290 (Print). doi:10.1016/j.jbiomech.2006.03.018

    Google Scholar 

  10. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61(1–3):1–48

    Article  MATH  MathSciNet  Google Scholar 

  11. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  12. Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50(2):53–78. ISSN 1085-9195 (Print). doi:10.1007/s12013-007-9002-3

    Google Scholar 

  13. Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension. coupled roles of wall shear and intramural stress. Hypertension 52(2):195–200. doi:10.1161/HYPERTENSIONAHA.107.103440

    Article  Google Scholar 

  14. Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10(1):221–246. doi:10.1146/annurev.bioeng.10.061807.160439

    Article  Google Scholar 

  15. Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42:1–8. doi:10.1016/j.jbiomech.2008.11.011. (in press)

    Google Scholar 

  16. Jackson ZS, Gotlieb AI, Langille BL (2002) Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res 90(8):918–25. doi:10.1161/01.RES.0000016481.87703.CC

    Article  Google Scholar 

  17. Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239(1):H14–H21

    Google Scholar 

  18. Krams R, Breeuwer M, van de Vosse F (2008) Personalised imaging and biomechanical modelling of large vessels. Med Biol Eng Comput 46(11):1057–1058. doi:10.1007/s11517-008-0417-9

    Article  Google Scholar 

  19. Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74(7):834–841

    Article  Google Scholar 

  20. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12. ISSN 0021-9290 (Print)

    Google Scholar 

  21. Lehman RM, Owens GK, Kassell NF, Hongo K (1991) Mechanism of enlargement of major cerebral collateral arteries in rabbits. Stroke 22(4):499–504. ISSN 0039-2499 (Print)

    Google Scholar 

  22. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259 (4):381–392. ISSN 0954-6820 (Print). doi:10.1111/j.1365-2796.2006.01624.x

    Google Scholar 

  23. Li Y-SJ, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971. doi:10.1016/j.jbiomech.2004.09.030

    Article  Google Scholar 

  24. Niedermüller H, Skalicky M, Hofecker G, Kment A (1977) Investigations on the kinetics of collagen-metabolism in young and old rats. Exp Gerontol 12(5–6):159–68. ISSN 0531-5565 (Print)

    Google Scholar 

  25. Pipkin AC (1968) Integration of an equation in membrane theory. Z Angew Math Phys 19(5):818–819. doi:10.1007/BF01591012

    Article  MATH  Google Scholar 

  26. Reneman RS, Hoeks APG (2008) Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput 46(5):499–507. doi:10.1007/s11517-008-0330-2

    Article  Google Scholar 

  27. Rigamonti D, Saleh J, Liu AM, Hsu FP, Mergner WJ, Humphrey JD (1994) Dolichoectatic aneurysm of common carotid artery: an animal model with histological correlation. Pathobiology 62(1):8–13. ISSN 1015-2008 (Print)

    Google Scholar 

  28. Rizvi MAD, Myers PR (1997) Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J Mol Cell Cardiol 29(7):1779–1789. doi:10.1006/jmcc.1996.0480

    Article  Google Scholar 

  29. Rizvi MAD, Katwa L, Spadone DP, Myers PR (1996) The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J Mol Cell Cardiol 28(2):243–252. doi:10.1006/jmcc.1996.0023

    Article  Google Scholar 

  30. Sluijter JPG, Smeets MB, Velema E, Pasterkamp G, de Kleijn DPV (2004) Increase in collagen turnover but not in collagen fiber content is associated with flow-induced arterial remodeling. J Vasc Res 41(6):546–555. ISSN 1018-1172 (Print). doi:10.1159/000081972

    Google Scholar 

  31. Strauss BH, Robinson R, Batchelor WB, Chisholm RJ, Ravi G, Natarajan MK, Logan RA, Mehta SR, Levy DE, Ezrin AM, Keeley FW (1996) In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res 79(3):541–550. ISSN 0009-7330 (Print)

    Google Scholar 

  32. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354. doi:10.1115/1.2798001

    Article  Google Scholar 

  33. Valentín A, Humphrey JD (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodeling. Phil Trans R Soc Lond A (in press)

  34. Valentín A, Humphrey JD (2009) Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J Biomech Eng (in press)

  35. Valentín A, Cardamone L, Baek S, Humphrey JD (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32):293–306. doi:10.1098/rsif.2008.0254

    Article  Google Scholar 

  36. Wicker BK, Hutchens HP, Wu Q, Yeh AT, Humphrey JD (2008) Normal basilar artery structure and biaxial mechanical behaviour. Comput Meth Biomech Biomed Eng 11(5):539–551. doi:10.1080/10255840801949793

    Article  Google Scholar 

  37. Willett TL, Labow RS, Avery NC, Lee JM (2007) Increased proteolysis of collagen in an in vitro tensile overload tendon model. Ann Biomed Eng 35(11):1961–1972. ISSN 0090-6964 (Print). doi:10.1007/s10439-007-9375-x

    Google Scholar 

  38. Wolinsky H (1970) Response of the rat aortic media to hypertension. Morphological and chemical studies. Circ Res 26(4):507–522. ISSN 0009-7330 (Print)

    Google Scholar 

  39. Xu C, Zarins CK, Bassiouny HS, Briggs WH, Reardon C, Glagov S (2000) Differential transmural distribution of gene expression for collagen types I and III proximal to aortic coarctation in the rabbit. J Vasc Res 37(3):170–182. ISSN 1018-1172 (Print)

    Google Scholar 

Download references

Acknowledgments

This work was supported, in part, via NIH grants HL-64372, HL-80415, and HL-86418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Humphrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentín, A., Humphrey, J.D. Modeling effects of axial extension on arterial growth and remodeling. Med Biol Eng Comput 47, 979–987 (2009). https://doi.org/10.1007/s11517-009-0513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0513-5

Keywords