Automated generation of a finite element stent model | Medical & Biological Engineering & Computing Skip to main content
Log in

Automated generation of a finite element stent model

  • Special Issue -Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Numerical simulations have proven to be a valuable tool to investigate the mechanical behavior of stents. These computer models require a considerable amount of preprocessing and computational effort and consequently there is a continuous need for accurate simplifications and automation. For example, it was recently shown that using beam elements instead of solid elements results in a significant speed up of stent simulations. However, the currently applied techniques to create a finite element mesh starting from stent samples remain time-consuming. We present a semi-automated strategy to obtain an accurate finite element beam mesh from a stent sample. The method consists of two steps: (1) A triangulated surface representation of the stent geometry is obtained from micro CT images. (2) Subsequently, a beam mesh is automatically generated by computing the centerline. The method is time-effective and results in an accurate 3D stent model as demonstrated for the MULTI-LINK Vision™ stent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Antiga L (2002) Patient-specific modeling of geometry and blood flow in large arteries, PhD thesis. Politecnico Di Milano, Italy

  2. Colombo A, Moses JW, Morice MC, Ludwig J, Holmes DR, Spanos V, Louvard Y, Desmedt B, Di Mario C, Leon MB (2004) Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 109:1244–1249. doi:10.1161/01.CIR.0000118474.71662.E3

    Article  Google Scholar 

  3. De Beule M (2008) Finite element stent design, PhD thesis. Ghent University, Belgium

  4. De Beule M, Mortier P, Carlier SG, Verhegghe B, Van Impe R, Verdonck P (2008) Realistic finite element-based stent design: the impact of balloon folding. J Biomech 41:383–389. doi:10.1016/j.jbiomech.2007.08.014

    Article  Google Scholar 

  5. Hall GJ, Kasper EP (2006) Comparison of element technologies for modeling stent expansion. J Biomech Eng 128:751–756. doi:10.1115/1.2264382

    Article  Google Scholar 

  6. Holzapfel GA, Stadler M, Gasser TC (2005) Towards a computational methodology for optimizing angioplasty treatments with stenting. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Heidelberg, pp 207–220

    Google Scholar 

  7. Kiousis DE, Gasser TC, Holzapfel GA (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng 35:1857–1869. doi:10.1007/s10439-007-9357-z

    Article  Google Scholar 

  8. Masschaele BC, Cnudde V, Dierick M, Jacobs P, Van Hoorebeke L, Vlassenbroeck J (2007) UGCT: new X-ray radiography and tomography facility. Nucl Instrum Methods A 580:266–269. doi:10.1016/j.nima.2007.05.099

    Article  Google Scholar 

  9. Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G (2005) A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med Eng Phys 27:13–18. doi:10.1016/j.medengphy.2004.08.012

    Article  Google Scholar 

  10. Mortier P, De Beule M, Carlier SG, Van Impe R, Verhegghe B, Verdonck P (2008) Numerical study of the uniformity of balloon-expandable stent deployment. J Biomech Eng 130(021018):1–7

    Google Scholar 

  11. Lally C, Dolan F, Prendergast PJ (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38:1574–1581. doi:10.1016/j.jbiomech.2004.07.022

    Article  Google Scholar 

  12. Radaelli AG, Augsburger L, Cebral JR, Ohta M, Rüfenacht DA, Balossino R, Benndorf G, Hose DR, Marzo A, Metcalfe R, Mortier P, Mut F, Reymond P, Socci L, Verhegghe B, Frangi AF (2008) Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the virtual intracranial stenting challenge 2007. J Biomech 41:2069–2081. doi:10.1016/j.jbiomech.2008.04.035

    Article  Google Scholar 

  13. Scheinert D, Scheinert S, Sax J, Piorkowski C, Bräunlich S, Ulrich M, Biamino G, Schmidt A (2005) Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol 45:312–315. doi:10.1016/j.jacc.2004.11.026

    Article  Google Scholar 

  14. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495. doi:10.1056/NEJM199408253310801

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Patrick Segers, PhD and Yves Taeymans, MD, PhD for their valuable support. First author’s research is supported by a BOF-grant (01D22606) from Ghent University, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mortier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortier, P., De Beule, M., Van Loo, D. et al. Automated generation of a finite element stent model. Med Biol Eng Comput 46, 1169–1173 (2008). https://doi.org/10.1007/s11517-008-0410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0410-3

Keywords

Navigation