Abstract
In magnetic nanoparticle imaging, magnetic nanoparticles are coated and functionalized to bind to specific targets. After measuring their magnetic relaxation or remanence, their distribution can be determined by means of inverse methods. The reconstruction algorithm presented in this paper includes first a dipole fit using a Levenberg–Marquardt optimizer to determine the reconstruction plane. Secondly, a minimum norm estimate is obtained on a regular grid placed in that plane. Computer simulations involving different parameter sets and conditions show that the used approach allows for the reconstruction of distributed sources, although the reconstructed shapes are distorted by blurring effects. The reconstruction quality depends on the signal-to-noise ratio of the measurements and decreases with larger sensor-source distances and higher grid spacings. In phantom measurements, the magnetic remanence of nanoparticle columns with clinical relevant sizes is determined with two common measurement systems. The reconstructions from these measurements indicate that the approach is applicable for clinical measurements. Our results provide parameter sets for successful application of minimum norm approaches to Magnetic Nanoparticle Imaging.
Similar content being viewed by others
References
A generic environment for bio-numerical simulation. ist-program of the european commission, project no. 10378 (2000) http://www.simbio.de
Alexiou C, Schmid R, Jurgons R, Bergemann C, Arnold W, Parak F (2002) Ferrofluids—magnetically controllable fluids and their applications, Lecture Notes in Physics, vol 594. Targeted tumor therapy with “Magnetic Drug Targeting": therapeutic efficacy of ferrofluid bound mitoxantrone. Springer, Berlin, pp 233–251
Apel M, Heinlein UA, Miltenyi S, Schmitz J, Campbell JD (2007) Magnetism in medicine, 2 edn. Magnetic cell separation for research and clinical applications. Wiley-VCH, Berlin, pp 571–595. doi:10.1002/9783527610174.ch4g
Brauer H, Haueisen J, Ziolkowski M, Tenner U, Nowak H (2000) Reconstruction of extended current sources in a human body phantom applying biomagnetic measuring techniques. IEEE Trans Magn 36(4):1700–1705. doi:10.1109/20.877770
Bulte JWM, Kraitchman DL (2004) Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499. doi:10.1002/nbm.924
Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, Eberbeck D, Bittmann I, Bergemann C, Weyh T, Trahms L, Rosenecker J, Rudolph C (2007) Targeted delivery of magnetic aerosol droplets to the lung. Nat Nano 2(8):495–499. doi:10.1038/nnano.2007.217
Di Rienzo L, Haueisen J (2006) Theoretical lower error bound for comparative evaluation of sensor arrays in magnetostatic linear inverse problems. IEEE Trans Magn 42(11):3669–3673. doi:10.1109/TMAG.2006.882338
Enpuku K, Soejima K, Nishimoto T, Tokumitsu H, Kuma H, Hamasaki N, Yoshinaga K (2006) Liquid phase immunoassay utilizing magnetic marker and high t-c superconducting quantum interference device. J Appl Phys 100(5). doi:10.1063/1.2337384
Flynn ER, Bryant HC (2005) A biomagnetic system for in vivo cancer imaging. Phys Med Biol 50:1273–1293. doi:10.1088/0031-9155/50/6/016
Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046):1214–1217. doi:10.1038/nature03808
Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic-fields of the brain—minimum norm estimates. Med Biol Eng Comput 32(1):35–42. doi:10.1007/BF02512476
Hansen PC (1987) The truncated svd as a method for regularization. BIT 27(4):534–553. doi:10.1007/BF01937276
Haueisen J, Unger R, Beuker T, Bellemann M (2002) Evaluation of inverse algorithms in the analysis of magnetic flux leakage data. IEEE Trans Magn 38(3):1481–1488. doi:10.1109/20.999121
Hergt R, Dutz S, Mller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):2919–2934. doi:10.1088/0953-8984/18/38/S26
Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11
Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho C, Waldoefner N, Scholz R, Jordan A, Loening S, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1662. doi:10.1016/j.eururo.2006.11.023
Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R (1997) Effects of magnetic fluid hyperthermia (mfh) on c3h mammary carcinoma in vivo. Int J Hyperther 13(6):587–605
Leder U, Haueisen J, Huck M, Nowak H (1998) Non-invasive imaging of arrhythmogenic left-ventricular myocardium after infarction. Lancet 352(9143):1825–1825. doi:10.1016/S0140-6736(98)00082-8
Pankhurst Q, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys Appl Phys 36(13):R167–R181(1). doi:10.1088/0022-3727/36/13/201
Pinto B, Silva C (2007) A simple method for calculating the depth of eeg sources using minimum norm estimates (mne). Med Biol Eng Comput 45(7):643–652. doi:10.1007/s11517-007-0204-z
Rad A, Arbab A, Iskander A, Jiang Q, Soltanian-Zadeh H (2007) Quantification of superparamagnetic iron oxide (spio)-labeled cells using mri. J Magn Reson Imag 26(2):366–374. doi:10.1002/jmri.20978
Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3. doi:10.1186/1477-3155-2-3
Schnabel A, Burghoff M, Hartwig S, Petsche F, Steinhoff U, Drung D, Koch H (2004) A sensor configuration for a 304 squid vector magnetometer. Neurol Clin Neurophysiol 70
Smith WE, Dallas WJ, Kullmann WH, Schlitt HA (1990) Linear estimation theory applied to the reconstruction of a 3-d vector current distribution. Appl Opt 29(5):658–667
Thiel F, Schnabel A, Knappe-Grüneberg S, Stollfu D, Burghoff M (2007) Demagnetization of magnetically shielded rooms. Rev Sci Instrum 78(3):035,106. doi:10.1063/1.2713433
Thorek D, Chen A, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38. doi:10.1007/s10439-005-9002-7
Tikhonov AN (1963) Resolution of ill-posed problems and the regularization method (in russian). Dokl Akad Nauk SSSR 151:501–504
Uchida S, Iramina K, Goto K, Ueno S (2000) A comparison of iterative minimum norm estimation and current dipole estimation for magnetic field measurements from small animals. IEEE Trans Magn 36(5):3724–3726. doi:10.1109/20.908953
Varah JM (1973) On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM J Numer Anal 10(2):257–267. doi:10.1137/0710025
Weitschies W, Ktitz R, Bunte T, Trahms L (1997) Determination of relaxing or remanent nanoparticle magnetization provides a novel binding specific technique for the evaluation of immunosassays. Pharm Pharmacol Lett 7:5–8
Wiekhorst F, Jurgons R, Eberbeck D, Seliger C, Steinhoff U, Trahms L, Alexiou C (2006) Quantification of magnetic nanoparticles by magnetorelaxometry after local cancer therapy with magnetic drug targeting. J Nanosci Nanotechnol 6(9–10):3222–3225. doi:10.1166/jnn.2006.477
Acknowledgments
This work was funded by the E. C. Sixth Framework Programme (STREP project “Biodiagnostics”, contract no. NMP4-CT-2005-017002) and in part supported by the the German Federal Ministry of Education and Research (FKZ 13N9150) and the state of Thuringia under participation of the European Funds for Regional Development (TAB project 2006FE0096).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baumgarten, D., Liehr, M., Wiekhorst, F. et al. Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements. Med Biol Eng Comput 46, 1177–1185 (2008). https://doi.org/10.1007/s11517-008-0404-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-008-0404-1