Determination of radiotherapy X-ray spectra using a screen-film system | Medical & Biological Engineering & Computing Skip to main content
Log in

Determination of radiotherapy X-ray spectra using a screen-film system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A method to determine the X-ray spectrum delivered by a medical linear accelerator is presented. This method consists of an analytical calculation of the primary spectrum using the Schiff bremsstrahlung cross-section formula. A correction factor that accounts for the scatter component of the spectrum is estimated by comparing the signal in two screen-film systems to a theoretical prediction using a model of energy deposition in such detectors. The model makes use of the quantum absorption efficiency and the average energy deposited per interacting photon concepts. These two quantities are calculated by means of Monte Carlo simulations of the screen-film systems used. This method is capable of determining the spectrum as a function of the spatial position across a plane perpendicular to the beam central axis. It does not, however, render information about the direction cosines of the X-ray fluence crossing such a plane, a requirement in order to produce a full phase-space file that can be used in conjunction with a Monte Carlo dose calculation engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mackie TR, Scrimger JW, Battista JJ (1985) A convolution method of calculating dose for a 15 MeV X-rays. Med Phys 12:188–196

    Article  Google Scholar 

  2. Mackie TR, Bielajew AF, Rogers DWO, Battista JJ (1998) Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol 33:1–20

    Article  Google Scholar 

  3. Wang L, Lovelock M, Chui CS (1998) A patient specific Monte Carlo dose-calculation method for photon beams. Med Phys 25:867–878

    Article  Google Scholar 

  4. Wang L, Lovelock M, Chui CS (1999) Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms. Med Phys 26:2626–2634

    Article  Google Scholar 

  5. Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475

    Article  Google Scholar 

  6. Ma CM, Mok E, Kapur A, Pawlicki T, Findley D, Brain S, Forster K, Boyer AL (1999) Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143

    Article  Google Scholar 

  7. Vanderstraeten B, Reynaert N, Paelinck L, Madani I, De Wagter C, De Gersem W, De Neve W, Tierenns H (2006) Accuracy of patient dose calculations for lung IMRT: a comparison of Monte Carlo, convolution/superposition and pencil beam computations. Med Phys 33:3213–3219

    Article  Google Scholar 

  8. Chibani O, Ma CM (2007) On the discrepancies between Monte Carlo dose calculations and measurements for the 18 MV Varian photon beam. Med Phys 34:1206–1216

    Article  Google Scholar 

  9. Garnica-Garza HM (2005) Characteristics of the photoneutron contamination present in a high-energy radiotherapy treatment room. Phys Med Biol 50:531–539

    Article  Google Scholar 

  10. Mesbahi A, Reilly AJ, Thwaites DI (2006) Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 2100EX linear accelerator. Appl Radiat Isot 64:656–662

    Article  Google Scholar 

  11. Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherap treatment units. Med Phys 22:489–501

    Article  Google Scholar 

  12. Zaidi H, Ay MR (2007) Current status and new horizons in Monte Carlo simulation of X-ray CT scanners. Med Biol Eng Comput. 45:809–817

    Article  Google Scholar 

  13. Iwasaki A, Kubota M, Hirota J, Fujimori A, Suzaki K, Aoki M, Abe Y (2006) Characteristic features of high-energy X-ray spectra estimation method based on the Waggener iterative perturbation principle. Med Phys 33:4056–4063

    Article  Google Scholar 

  14. Waggener RG, Blough MM, Terry JA, Chen D, Lee NE, Zhang S, McDavid WD (1999) X-ray spectra estimation using attenuation measurements from 25kVp to 18 MV. Med Phys 26:1269–1278

    Article  Google Scholar 

  15. Paniak LD, Charland PM (2005) Enhanced bremsstrahlung spectrum reconstruction from depth-dose gradients. Phys Med Biol 50:3245–3261

    Article  Google Scholar 

  16. Cordaro MC, Zucker MS (1971) A Method for solving time-dependent electron transport problems. Nucl Sci Eng 45:107–116

    Google Scholar 

  17. Huizenga H, Storchi PRM (1989) Numerical calculation of energy deposition by broad high-energy electron beams. Phys Med Biol 34:1371–1396

    Article  Google Scholar 

  18. Janssen JJ, Riedeman DE, Storchi PR, Huizenga H (1994) Numerical calculation of energy deposition by high-energy electron beams: III. Three-dimensional heterogeneous media. Phys Med Biol 39:1351–1366

    Article  Google Scholar 

  19. Janssen JJ, Korevaar EW, Storchi PR, Huizenga H (1997) Numerical calculation of energy deposition by high-energy electron beams: III-B. Improvements to the 6D phase space evolution model. Phys Med Biol 42:1441–1449

    Article  Google Scholar 

  20. Koch HW, Motz JW (1959) Bremsstrahlung cross-section formulas and related data. Rev Mod Phys 31:920–955

    Article  Google Scholar 

  21. Desobry GE, Boyer AL (1991) Bremsstrahlung review: an analysis of the Schiff spectrum. Med Phys 18:497–505

    Article  Google Scholar 

  22. Desobry GE, Boyer AL (1994) An analytic calculation of the energy fluence spectrum of a linear accelerator. Med Phys 21:1943–1952

    Article  Google Scholar 

  23. Chaney EL, Cullip TJ, Gabriel TA (1994) A Monte Carlo study of accelerator head scatter. Med Phys 21:1383–1390

    Article  Google Scholar 

  24. Jaffray D, Battista JJ, Fenster A, Munro P (1995) Monte Carlo studies of X-ray energy absorption and quantum noise in megavoltage transmission radiography. Med Phys 22:1077–1088

    Article  Google Scholar 

  25. Kausch C, Schreiber B, Kreuder F, Schmidt R, Dossel O (1999) Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy. Med Phys 26:2113–2124

    Article  Google Scholar 

  26. Hajdok G, Yao J, Battista JJ, Cunningham IA (2006) Signal and noise transfer properties of photoelectric interactions in diagnostic X-ray imaging detectors. Med Phys 33:3601:3620

    Article  Google Scholar 

  27. Briesmeister JF (eds) (1997) MCNP -a general Monte Carlo N-Particle code, version 4C Report LA-13181. Los Alamos

  28. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  Google Scholar 

  29. Chetty I, DeMarco JJ, Solberg TD (2000) A virtual source model for Monte Carlo modeling of arbitrar intensity distributions. Med Phys 27:166–172

    Article  Google Scholar 

  30. Sheikh-Bagheri D, Rogers DWO (2002) Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med Phys 29:391–402

    Article  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to Dr. Frank Van den Heuvel for his support and guidance during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Garnica-Garza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnica-Garza, H.M. Determination of radiotherapy X-ray spectra using a screen-film system. Med Biol Eng Comput 46, 1029–1037 (2008). https://doi.org/10.1007/s11517-008-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0389-9

Keywords

Navigation