Artificial neural network: border detection in echocardiography | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Artificial neural network: border detection in echocardiography

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional ejection fraction, the myocardial thickness, and the ventricular mass, etc. However, the image is very noisy, which renders the delineation of the borders of the left ventricle very difficult. While there are many techniques image segmentation, this work chooses the artificial neural network (ANN) since it is not very sensitive to noise. In order to reduce the processing time, the operator selects the region of interest where the neural network will identify the borders. Neighborhood and gradient search techniques are then employed to link the points and the left ventricle contour is traced. The present method has been efficient in detecting the left ventricle borders echocardiography images compared to those whose borders were delineated by the specialists. For good results, it is important to choose properly the areas to be analyzed and the central points of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Binder T, Süssner M, Moertl D, Strohmer T, Baumgartner H, Maurer G, Porenta G (1999) Artificial neural networks and spatial temporal contour linking for automated endocardial contour detection on echocardiograms: a novel approach to determine left ventricular contractile function. Ultrasound Med Biol 25(7):1069–1076

    Article  Google Scholar 

  2. Bosch JG, Mitchell SC, Lelieveldt BP, Nijland F, Kamp O, Sonka M, Reiber JH (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–83

    Article  Google Scholar 

  3. Brummer ME, Mersereau RM, Eisner RL, Lewine RRJ (1993) Automatic detection of brain contours in MRI data sets. IEEE Trans Medical Imaging 12(2):153–166

    Article  Google Scholar 

  4. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  5. Christodoulou CI, Pattichis CS (1999) Unsupervised pattern recognition for the classification of EMG signals. IEEE Trans Biomed Eng 46(2):169–178

    Article  Google Scholar 

  6. Coppini G, Poli R, Valli G (1995) Recovery of the 3-D Shape of the Left Ventricle from Echocardiographic Images. IEEE Trans Med Imaging 14:301–317

    Article  Google Scholar 

  7. Costa C, Moura L (1995) Automatic detection of lv contours in nuclear medicine using geometrical information and a neural net. IEEE Computers in Cardiology, IEEE Computers Society Press, Austria 557–560

  8. Dias JMB, Leitão JMN (1996) Wall position and thickness estimation from sequences of echocardiographic images. IEEE Trans Med Imaging 15(1):25–38

    Article  Google Scholar 

  9. Eichel PH, Delp EJ, Koral K, Buda AJ (1988) A method for a fully automatic definition of coronary arterial edges from cineangiograms. IEEE Trans Med Imaging 7:313–320

    Article  Google Scholar 

  10. Ercal F, Moganti M, Stoecker WV, Moss RH (1993) Boundary detection and color segmentation in skin tumor images. IEEE Trans Med Imaging 12(3):624–627

    Article  Google Scholar 

  11. Fausett L (1994) Fundamentals of Neural Networks. Prentice Hall, New Jersey

  12. Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. HP Laboratories, Palo Alto

  13. Feng J, Lin WC, Chen CT (1991) Epicardial boundary detection using fuzzy reasoning. IEEE Trans Med Imaging 10:187–199

    Article  Google Scholar 

  14. Gonzalez R, Woods R (1992) Digital Image Processing. Addison-Wesley Publishing Company

  15. Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–681

    Article  Google Scholar 

  16. Lilly P, Jenkins J, Bourdillon P (1989) Automatic contour definition on left ventriculograms by image evidence and a multiple template-based model. IEEE Trans Med Imaging 8(2):173–185

    Article  Google Scholar 

  17. Lim CP, Harrison RF, Kennedy RL (1997) Application of autonomous neural network systems to medical pattern classification tasks. Artif Intell Med 11(3):215–239

    Article  Google Scholar 

  18. Lin JS, Cheng KS, Mao CW (1996) Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network. Int J Biomed Comput 42(3):205–214

    Article  Google Scholar 

  19. Miller AS, Blott BH, Hames TK (1992) Review of neural network applications in medical imaging and signal processing. Med Biol Eng Comput 30(5):449–464

    Article  Google Scholar 

  20. Ouyang N, Yamauchi K (1998) Using a neural network to diagnose the hypertrophic portions of hypertrophic cardiomyopathy. MD Comput 15(2):106–9

    Google Scholar 

  21. Patterson D (1996) Artificial Neural Networks. Prentice Hall, Singapore

  22. Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918

    Article  Google Scholar 

  23. Rosenblatt F (1958) The perceptrons: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Google Scholar 

  24. Senior R (2002) Left ventricular contrast echocardiography: role for evaluation of function and structure. Echocardiography 19(7 Pt 2):615–20

    Google Scholar 

  25. Shu DY, Eisner RL, Mersereau RM, Pettigrew RI (1993) Knowledge-based system for boundary detection os four-dimensional cardiac MRI sequences. IEEE Trans Med Imaging 12(1):65–72

    Article  Google Scholar 

  26. Sonka M, Liang W, Kanani P, Allan J, DeJong S, Kerber R, McKay C (1998) Intracardiac echocardiography: computerized detection of left ventricular borders. Int J Cardiac Imaging 14(6):397–411

    Article  Google Scholar 

  27. Spencer KT, Bednarz J, Mor-Avi V, DeCara J, Lang RM (2002) Automated endocardial border detection and evaluation of left ventricular function from contrast-enhanced images using modified acoustic quantification. J Am Soc Echocardiogr 15(8):777–8

    Article  Google Scholar 

  28. Srinivasan V, Bhatia P, Ong SH (1994) Edge detection using a neural network. Pattern Recognit 27(12):1653–1662

    Article  Google Scholar 

  29. Tomatis S, Bono A, Bartoli C, Carrara M, Lualdi M, Tragni G, Marchesini R (2003) Automated melanoma detection: multispectral imaging and neural network approach for classification. Med Phys 30(2):212–21

    Article  Google Scholar 

  30. Tu HK, Matheny A, Goldgof DB, Bunke H (1995) Left ventricular boundary detection from spatio-temporal volumetric computed tomography images. Comput Med Imaging Graph 19(1):27–46

    Article  Google Scholar 

  31. Wu YC, Doi K, Giger ML (1995) Detection of lung nodules in digital chest radiographs using artificial neural networks: a pilot study, J Digit Imaging 8(2):88–94; [published erratum appears in J Digit Imaging 8(3):149]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Jyh Herng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, E.J.H., De Andrade, M.L., Nicolosi, D.E. et al. Artificial neural network: border detection in echocardiography. Med Biol Eng Comput 46, 841–848 (2008). https://doi.org/10.1007/s11517-008-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0372-5

Key words

Navigation