Design and performance of personal cooling garments based on three-layer laminates | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Design and performance of personal cooling garments based on three-layer laminates

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Personal cooling systems are mainly based on cold air or liquids circulating through a tubing system. They are weighty, bulky and depend on an external power source. In contrast, the laminate-based technology presented here offers new flexible and light weight cooling garments integrated into textiles. It is based on a three-layer composite assembled from two waterproof, but water vapor permeable membranes and a hydrophilic fabric in between. Water absorbed in the fabric will be evaporated by the body temperature resulting in cooling energy. The laminate’s high adaptiveness makes it possible to produce cooling garments even for difficult anatomic topologies. The determined cooling energy of the laminate depends mainly on the environmental conditions (temperature, relative humidity, wind): heat flux at standard climatic conditions (20°C, 65% R.H., wind 5 km/h) has measured 423.2 ± 52.6 W/m2, water vapor transmission resistance, R et, 10.83 ± 0.38 m2 Pa/W and thermal resistance, R ct, 0.010 ± 0.002 m2 K/W. Thermal conductivity, k, changed from 0.048 ± 0.003 (dry) to 0.244 ± 0.018 W/m K (water added). The maximum fall in skin temperature, ∆T max, under the laminate was 5.7 ± 1.2°C, taken from a 12 subject study with a thigh cooling garment during treadmill walking (23°C, 50% R.H., no wind) and a significant linear correlation (R = 0.85, P = 0.01) between body mass index and time to reach 67% of ∆T max could be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arngrimsson SA, Petitt DS, Stueck MG, Jorgensen DK, Cureton KJ (2004) Cooling vest worn during active warm-up improves 5-km run performance in the heat. J Appl Physiol 96(5):1867–1874. doi:10.1152/japplphysiol.00979.2003

    Article  Google Scholar 

  2. Bowman HF, Cravalho EG, Woods M (1975) Theory, measurement, and application of thermal properties of biomaterials. Annu Rev Biophys Bioeng 4(1):43–80. doi:10.1146/annurev.bb.04.060175.000355

    Article  Google Scholar 

  3. Chan YT, Constable SH, Bomalaski SH (1997) A lightweight ambient air cooling unit for use in hazardous environments. Am Ind Hyg Assoc J 58(1):10–14. doi:10.1080/15428119791013017

    Google Scholar 

  4. Cowell SA, Stocks JM, Evans DG, Simonson SR, Greenleaf JE (2002) The exercise and environmental physiology of extravehicular activity. Aviat Space Environ Med 73(1):54–67

    Google Scholar 

  5. Craig FN, Moffitt JT (1974) Efficiency evaporative cooling wet cloth. J Appl Physiol 36(3):313–316

    Google Scholar 

  6. Daanen HA, van Es EM, de Graaf JL (2006) Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. Int J Sports Med 27(5):379–388. doi:10.1055/s-2005-865746

    Article  Google Scholar 

  7. Flouris AD, Cheung SS (2006) Design and control optimization of microclimate liquid cooling systems underneath protective clothing. Ann Biomed Eng 34(3):359–372. doi:10.1007/s10439-005-9061-9

    Article  Google Scholar 

  8. Frydrych I, Dziworska G, Bilska J (2002) Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres. Fibres Text East Eur 10(4):40–44

    Google Scholar 

  9. Hinz J, Rosmus M, Popov A, Moerer O, Frerichs I, Quintel M (2007) Effectiveness of an intravascular cooling method compared with a conventional cooling technique in neurologic patients. J Neurosurg Anesthesiol 19(2):130–135. doi:10.1097/ANA.0b013e318032a208

    Article  Google Scholar 

  10. Johnston NJ, King AT, Protheroe R, Childs C (2006) Body temperature management after severe traumatic brain injury: methods and protocols used in the United Kingdom and Ireland. Resuscitation 70(2):254–262. doi:10.1016/j.resuscitation.2006.02.010

    Article  Google Scholar 

  11. Kinnman J, Andersson T, Andersson G (2000) Effect of cooling suit treatment in patients with multiple sclerosis evaluated by evoked potentials. Scand J Rehabil Med 32(1):16–19. doi:10.1080/003655000750045686

    Article  Google Scholar 

  12. Ku YTE, Montgomery LD, Webbon BW (1996) Hemodynamic and thermal responses to head and neck cooling in men and women. Am J Phys Med Rehabil 75(6):443–450. doi:10.1097/00002060-199611000-00008

    Article  Google Scholar 

  13. Mayer SA, Kowalski RG, Presciutti M, Ostapkovich ND, McGann E, Fitzsimmons BF et al (2004) Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med 32(12):2508–2515. doi:10.1097/01.CCM.0000147441.39670.37

    Article  Google Scholar 

  14. McLellan TM, Bell DG (1999) Efficacy of air and liquid cooling during light and heavy exercise while wearing NBC clothing. Aviat Space Environ Med 70(8):802–811

    Google Scholar 

  15. Mermier CM, Schneider SM, Gurney AB, Weingart HM, Wilmerding MV (2006) Preliminary results: effect of whole-body cooling in patients with myasthenia gravis. Med Sci Sports Exerc 38(1):13–20. doi:10.1249/01.mss.0000180887.33650.0f

    Article  Google Scholar 

  16. Meyer-Heim A, Rothmaier M, Weder M, Kool J, Schenk P, Kesselring J (2007) Advanced lightweight cooling-garment technology: functional improvements in thermosensitive patients with multiple sclerosis. Mult Scler 13(2):232–237. doi:10.1177/1352458506070648

    Article  Google Scholar 

  17. Nunneley SA (1970) Water cooled garments—a review. Space Life Sci 2(3):335–360. doi:10.1007/BF00929293

    Article  Google Scholar 

  18. Shim H, McCullough EA, Jones BW (2001) Using phase change materials in clothing. Text Res J 71(6):495–502

    Google Scholar 

  19. Shvartz E (1972) Efficiency and effectiveness of different water cooled suits—review. Aerosp Med 43(5):488

    Google Scholar 

  20. Syndulko K, Jafari M, Woldanski A, Baumhefner RW, Tourtellotte WW (1996) Effects of temperature in multiple sclerosis: a review of the literature. J Neurol Rehabil 10(1):23–34. doi:10.1177/154596839601000104

    Google Scholar 

  21. Taylor NAS (2006) Challenges to temperature regulation when working in hot environments. Ind Health 44(3):331–344. doi:10.2486/indhealth.44.331

    Article  Google Scholar 

  22. Webb P, Troutman SJ, Annis JF (1970) Automatic cooling water cooled space suits. Aerosp Med 41(3):269

    Google Scholar 

  23. Webster J, Holland EJ, Sleivert G, Laing RM, Niven BE (2005) A light-weight cooling vest enhances performance of athletes in the heat. Ergonomics 48(7):821–837. doi:10.1080/00140130500122276

    Article  Google Scholar 

  24. Xu XJ, Endrusick T, Laprise B, Santee W, Kolka M (2006) Efficiency of liquid cooling garments: prediction and manikin measurement. Aviat Space Environ Med 77(6):644–648

    Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. B. Selm, Ms. C. Becker and Mr. B. Wuest for their technical input and assistance of the experiments. We also acknowledge the efforts of Mrs. S. Noller from the Swiss Textile School, Zurich, for her support in manufacturing the thigh cooling garments. We thank Beth Padden for carefully reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rothmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothmaier, M., Weder, M., Meyer-Heim, A. et al. Design and performance of personal cooling garments based on three-layer laminates. Med Biol Eng Comput 46, 825–832 (2008). https://doi.org/10.1007/s11517-008-0363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0363-6

Keywords

Navigation