A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data | Medical & Biological Engineering & Computing Skip to main content
Log in

A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global–local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bai X, He B (2006) Estimation of number of independent brain electric sources from the scalp EEGs. IEEE Trans Biomed Eng 53:1883–1892

    Article  Google Scholar 

  2. Bandler J, Biernacki R, Chen S, Grobelny P, Hemmers H (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Technol 42:2536–2544

    Article  Google Scholar 

  3. Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Søndergaard J (2004) Space mapping: the state of the art. IEEE Trans Microw Theory Technol 52:337–361

    Article  Google Scholar 

  4. Barr R, Pilkington T, Boineau J, Spach M (1966) Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Trans Biomed Eng 23:88–92

    Google Scholar 

  5. Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, der Vorst H (1994) Templates for the solution of linear systems. SIAM, Philadelphia

    Google Scholar 

  6. Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2008) EEG source analysis using space mapping techniques. J Comput Appl Math 215:339–347

    Article  MATH  MathSciNet  Google Scholar 

  7. Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2007) Influence of noise on EEG source analysis using space mapping techniques. Int J Appl Electromagn Mech 25:383–387

    Google Scholar 

  8. Cuffin B (1995) A method for localizing EEG sources in realistic head models. IEEE Trans Biomed Eng 42:68–71

    Article  Google Scholar 

  9. de Munck J, Van Dijk B, Spekreijse H (1988) Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Trans Biomed Eng 35:960–965

    Article  Google Scholar 

  10. Huang M, Aine C, Supek S, Best E, Ranken D, Flynn E (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroenceph Clin Neurophysiol 108:32–44

    Article  Google Scholar 

  11. Jiang T, Luo A, Li X, Kruggel F (2003) A Comparative Study of global optimisation approaches to MEG source localization. Int J Comput Math 80:305–324

    Article  MATH  Google Scholar 

  12. Kaytal B, Schimpf P (2004) Multiple current dipole estimation in a realistic head model using R-MUSIC. Proc IEEE EMBS 26:829–832

    Google Scholar 

  13. Khosla D,Singh M, Don M (1997) Spatio-temporal EEG source localization using simulated annealing. IEEE Trans Biomed Eng 44:1075–1091

    Article  Google Scholar 

  14. Knösche T, Berends E, Jagers H, Peters M (1998) Determining the number of independent sources of the EEG: a simulation study on information criteria. Brain Topogr 11:111–124

    Article  Google Scholar 

  15. Liu H, Schimpf P (2006) Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm. IEEE Trans Biomed Eng 53:652–661

    Article  Google Scholar 

  16. Mosher J, Leahy R (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47:332–340

    Article  Google Scholar 

  17. Mosher J, Lewis P, Leahy R (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557

    Article  Google Scholar 

  18. Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  Google Scholar 

  19. Roth B, Ko D, von Albertini Carletti I, Scaffidi D, Sato S (1997) Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr Clin Neuroph 102:159–166

    Article  Google Scholar 

  20. Rush S, Driscoll D (1969) EEG electrode sensitivity—an application of reciprocity. IEEE Trans Biomed Eng 16:15–22

    Article  Google Scholar 

  21. Salu Y, Cohen L,Rose D, Sato S, Kufta C, Hallett M (1990) An improved method for localizing electric brain dipoles. IEEE Trans Biomed Eng 37:699–705

    Article  Google Scholar 

  22. Thakor N, Tong B (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495

    Article  Google Scholar 

  23. Van Hoey G, De Clercq J, Vanrumste B, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2000) EEG dipole source localization using artificial neural networks. Phys Med Biol 45:997–1011

    Article  Google Scholar 

  24. Vanrumste B,Van Hoey G, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14:83–92

    Article  Google Scholar 

  25. Vigario R, Srel J, Jousmki V, Hmlinen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47:589–593

    Article  Google Scholar 

  26. Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech Signal Process 33:387–392

    Article  MathSciNet  Google Scholar 

  27. Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89:223903

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the “Bijzonder Onderzoeksfonds” (B.O.F.) of the Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Crevecoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crevecoeur, G., Hallez, H., Van Hese, P. et al. A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data. Med Biol Eng Comput 46, 767–777 (2008). https://doi.org/10.1007/s11517-008-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0341-z

Keywords

Navigation