Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries

  • Special Issue
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cytoskeletal proteins determine cell shape and integrity and membrane-bound structures connected to extracellular components allow tissue integrity. These structural elements have an active role in the interaction of blood vessels with their environment. Shear stress due to blood flow is the most important force stimulating the endothelium. The role of cytoskeletal proteins in endothelial responses to flow has been studied in resistance arteries using pharmacological tools and transgenic models. Shear stress activates extracellular “flow sensing” elements associated with a thick glycocalyx communicating the signal to membrane-bound complexes (integrins and/or dystrophin-dystroglycans) and to eNOS through a pathway involving the intermediate filament vimentin, the microtubule network and actin. When blood flow increases chronically the endothelium triggers diameter enlargement and medial hypertrophy. This is facilitated by the genetic absence of the intermediate filaments, vimentin and desmin suggesting that these elements oppose the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

INSERM:

National Institute for Health and Medical Research

CNRS:

National Center for Scientific Research

FMD:

Flow-mediated dilation

NO:

Nitric oxide

ROS:

Reactive oxygen species

ONOO−:

Peroxynitrites

eNOS:

Endothelial NO-synthase

FMD:

Flow-mediated dilation

CAV1:

Caveolin-1

MMPs:

Metalloproteases

FAK:

Focal adhesion kinase

HSPs:

Heat shock proteins

ECM:

Extracellular matrix

AT1/2R:

Angiotensin II type 1 or 2 receptor

References

  1. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 91(10):877–887

    Article  CAS  PubMed  Google Scholar 

  2. Kodama A, Lechler T, Fuchs E (2004) Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol.167(2):203–207

    Article  Google Scholar 

  3. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96(6):1110–1126

    Article  CAS  PubMed  Google Scholar 

  4. Hutcheson IR, Griffith TM (1996) Mechanotransduction through the endothelial cytoskeleton: mediation of flow- but not agonist-induced EDRF release. Br J Pharmacol 118(3):720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci-Guyon E, Babinet C, Briand P, Friedlander G, Poitevin P, Levy BI (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100(11):2909–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loufrani L, Matrougui K, Gorny D, Duriez M, Blanc I, Levy BI, Henrion D (2001) Flow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin. Circulation 103(6):864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiffers PM, Henrion D, Boulanger CM, Colucci-Guyon E, Langa-Vuves F, van Essen H, Fazzi GE, Levy BI, De Mey JG (2000) Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler Thromb Vasc Biol 20(3):611–616

    Article  CAS  PubMed  Google Scholar 

  8. Loufrani L, Li Z, Levy BI, Paulin D, Henrion D (2002) Excessive microvascular adaptation to changes in blood flow in mice lacking gene encoding for desmin. Arterioscler Thromb Vasc Biol 22(10):1579–1584

    Article  CAS  PubMed  Google Scholar 

  9. Loufrani L, Levy BI, Henrion D (2002) Defect in microvascular adaptation to chronic changes in blood flow in mice lacking the gene encoding for dystrophin. Circ Res 91(12):1183–1189

    Article  CAS  PubMed  Google Scholar 

  10. Bevan JA, Laher I (1991) Pressure and flow-dependent vascular tone. Faseb J 5(9):2267–2273

    CAS  PubMed  Google Scholar 

  11. Bevan JA, Henrion D (1994) Pharmacological implications of the flow-dependence of vascular smooth muscle tone. Annu Rev Pharmacol Toxicol 34:173–190

    Article  CAS  PubMed  Google Scholar 

  12. Henrion D (2005) Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. Arch Mal Coeur Vaiss 98(9):913–921

    CAS  PubMed  Google Scholar 

  13. Henrion D, Laher I, Laporte R, Bevan JA (1992) Angiotensin II amplifies arterial contractile response to norepinephrine without increasing Ca++ influx: role of protein kinase C. J Pharmacol Exp Ther 261(3):835–840

    CAS  PubMed  Google Scholar 

  14. Henrion D, Benessiano J, Levy BI (1997) In vitro modulation of a resistance artery diameter by the tissue renin-angiotensin system of a large donor artery. Circ Res 80(2):189–195

    Article  CAS  PubMed  Google Scholar 

  15. Iglarz M, Levy BI, Henrion D (1998) Chronic endothelin-1-induced changes in vascular reactivity in rat resistance arteries and aorta. Eur J Pharmacol 359(1):69–75

    Article  CAS  PubMed  Google Scholar 

  16. Yeon DS, Kim JS, Ahn DS, Kwon SC, Kang BS, Morgan KG, Lee YH (2002) Role of protein kinase C- or RhoA-induced Ca(2+) sensitization in stretch-induced myogenic tone. Cardiovasc Res 53(2):431–438

    Article  CAS  PubMed  Google Scholar 

  17. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  18. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  PubMed  Google Scholar 

  19. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291(3):H985–H1002

    Article  CAS  PubMed  Google Scholar 

  20. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190

    Article  CAS  PubMed  Google Scholar 

  21. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  22. Davies PF, Spaan JA, Krams R (2005) Shear stress biology of the endothelium. Ann Biomed Eng 33(12):1714–1718

    Article  PubMed  Google Scholar 

  23. Bevan JA, Siegel G (1991) Blood vessel wall matrix flow sensor: evidence and speculation. Blood Vessels 28(6):552–556

    CAS  PubMed  Google Scholar 

  24. Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11(3):281–294

    Article  CAS  PubMed  Google Scholar 

  25. Henrion D, Bevan JA (1995) Magnitude of flow-induced contraction and associated calcium influx in the rabbit facial vein is dependent upon the level of extracellular sodium. J Vasc Res 32(1):41–48

    Article  CAS  PubMed  Google Scholar 

  26. Pohl U, Herlan K, Huang A, Bassenge E (1991) EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am J Physiol 261(6 Pt 2):H2016–2023

    CAS  PubMed  Google Scholar 

  27. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142

    Article  CAS  PubMed  Google Scholar 

  28. Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES (2005) The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 16(5):507–511

    Article  CAS  PubMed  Google Scholar 

  29. VanTeeffelen JW, Brands J, Jansen C, Spaan JA, Vink H (2007) Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension 50(1):261–267

    Article  CAS  PubMed  Google Scholar 

  30. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100(13):7988–7995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morita T, Kurihara H, Maemura K, Yoshizumi M, Nagai R, Yazaki Y (1994) Role of Ca2+ and protein kinase C in shear stress-induced actin depolymerization and endothelin 1 gene expression. Circ Res 75(4):630–636

    Article  CAS  PubMed  Google Scholar 

  32. Cipolla MJ, Gokina NI, Osol G (2002) Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. Faseb J 16(1):72–76

    Article  CAS  PubMed  Google Scholar 

  33. Sun D, Huang A, Sharma S, Koller A, Kaley G (2001) Endothelial microtubule disruption blocks flow-dependent dilation of arterioles. Am J Physiol Heart Circ Physiol 280(5):H2087–2093

    CAS  PubMed  Google Scholar 

  34. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116(5):1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259(4):381–392

    Article  CAS  PubMed  Google Scholar 

  37. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–1224

    Article  CAS  PubMed  Google Scholar 

  38. Lehoux S, Tedgui A (2005) Making up and breaking up: the tortuous ways of the vascular wall. Arterioscler Thromb Vasc Biol 25(5):892–894

    Article  CAS  PubMed  Google Scholar 

  39. Muller JM, Chilian WM, Davis MJ (1997) Integrin signaling transduces shear stress–dependent vasodilation of coronary arterioles. Circ Res 80(3):320–326

    Article  CAS  PubMed  Google Scholar 

  40. Koshida R, Rocic P, Saito S, Kiyooka T, Zhang C, Chilian WM (2005) Role of focal adhesion kinase in flow-induced dilation of coronary arterioles. Arterioscler Thromb Vasc Biol 25(12):2548–2553

    Article  CAS  PubMed  Google Scholar 

  41. Dumont O, Loufrani L, You D, Henrion D (2004) Involvement of alpha-1 integrins in the activation of akt and no-synthesis after flow (shear stress) activation of vasodilation in resistance arteries. J Vasc Res 41(suppl 1):58

    Google Scholar 

  42. Brown SC, Lucy JA (1993) Dystrophin as a mechanochemical transducer in skeletal muscle. Bioessays 15(6):413–419

    Article  CAS  PubMed  Google Scholar 

  43. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94(8):1023–1031

    Article  CAS  PubMed  Google Scholar 

  44. Loufrani L, Dubroca C, You D, Li Z, Levy B, Paulin D, Henrion D (2004) Absence of dystrophin in mice reduces NO-dependent vascular function and vascular density: total recovery after a treatment with the aminoglycoside gentamicin. Arterioscler Thromb Vasc Biol 24(4):671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aurino S, Nigro V (2006) Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol 25(1):5–12

    CAS  PubMed  Google Scholar 

  46. Ramirez-Sanchez I, Ceballos-Reyes G, Rosas-Vargas H, Cerecedo-Mercado D, Zentella-Dehesa A, Salamanca F, Coral-Vazquez RM (2007) Expression and function of utrophin associated protein complex in stretched endothelial cells: dissociation and activation of eNOS. Front Biosci 12:1956–1962

    Article  CAS  PubMed  Google Scholar 

  47. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284(1):R1–12

    Article  CAS  PubMed  Google Scholar 

  48. Deconinck N, Scaillon M, Segers V, Groswasser JJ, Dan B (2006) Opsoclonus-myoclonus associated with celiac disease. Pediatr Neurol 34(4):312–314

    Article  PubMed  Google Scholar 

  49. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285(4):H1720–H1729

    Article  CAS  PubMed  Google Scholar 

  50. Bagi Z, Frangos JA, Yeh JC, White CR, Kaley G, Koller A (2005) PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arterioscler Thromb Vasc Biol 25(8):1590–1595

    Article  CAS  PubMed  Google Scholar 

  51. Dusserre N, L’Heureux N, Bell KS, Stevens HY, Yeh J, Otte LA, Loufrani L, Frangos JA (2004) PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation. Arterioscler Thromb Vasc Biol 24(10):1796–1802

    Article  CAS  PubMed  Google Scholar 

  52. Liu SQ, Yen M, Fung YC (1994) On measuring the third dimension of cultured endothelial cells in shear flow. Proc Natl Acad Sci U S A 91(19):8782–8786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80(12):1819–1831

    Article  CAS  PubMed  Google Scholar 

  54. Listi F, Candore G, Lio D, Cavallone L, Colonna-Romano G, Caruso M, Hoffmann E, Caruso C (2004) Association between platelet endothelial cellular adhesion molecule 1 (PECAM-1/CD31) polymorphisms and acute myocardial infarction: a study in patients from Sicily. Eur J Immunogenet 31(4):175–178

    Article  CAS  PubMed  Google Scholar 

  55. Thoumine O, Ziegler T, Girard PR, Nerem RM (1995) Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure. Exp Cell Res 219(2):427–441

    Article  CAS  PubMed  Google Scholar 

  56. Cucina A, Sterpetti AV, Pupelis G, Fragale A, Lepidi S, Cavallaro A, Giustiniani Q, Santoro D’Angelo L (1995) Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur J Vasc Endovasc Surg 9(1):86–92

    Article  CAS  PubMed  Google Scholar 

  57. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79(4):679–694

    Article  CAS  PubMed  Google Scholar 

  58. Terzi F, Henrion D, Colucci-Guyon E, Federici P, Babinet C, Levy BI, Briand P, Friedlander G (1997) Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J Clin Invest 100(6):1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvee A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(Pt 13):1897–1907

    CAS  PubMed  Google Scholar 

  60. Helmke BP, Goldman RD, Davies PF (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res 86(7):745–752

    Article  CAS  PubMed  Google Scholar 

  61. Tsuruta D, Jones JC (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci 116(Pt 24):4977–4984

    Article  CAS  PubMed  Google Scholar 

  62. Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21(13):1581–1597

    Article  CAS  PubMed  Google Scholar 

  63. Mulvany MJ (1999) Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res 41(1):9–13

    Article  CAS  PubMed  Google Scholar 

  64. Prewitt RL, Rice DC, Dobrian AD (2002) Adaptation of resistance arteries to increases in pressure. Microcirculation 9(4):295–304

    Article  PubMed  Google Scholar 

  65. Mulvany MJ (2002) Small artery remodeling and significance in the development of hypertension. News Physiol Sci 17:105–109

    PubMed  Google Scholar 

  66. Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74(7):834–841

    Article  CAS  PubMed  Google Scholar 

  67. Koller A, Huang A, Sun D, Kaley G (1995) Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res 76(4):544–550

    Article  CAS  PubMed  Google Scholar 

  68. Gorny D, Loufrani L, Kubis N, Levy BI, Henrion D (2002) Chronic hydralazine improves flow (shear stress)-induced endothelium-dependent dilation in mouse mesenteric resistance arteries in vitro. Microvasc Res 64(1):127–134

    Article  CAS  PubMed  Google Scholar 

  69. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC (1996) Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat. Circ Res 79(5):1015–1023

    Article  CAS  PubMed  Google Scholar 

  70. Pourageaud F, De Mey JG (1997) Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow. Am J Physiol 273(4 Pt 2):H1699–H1706

    CAS  PubMed  Google Scholar 

  71. Buus CL, Pourageaud F, Fazzi GE, Janssen G, Mulvany MJ, De Mey JG (2001) Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries. Circ Res 89(2):180–186

    Article  CAS  PubMed  Google Scholar 

  72. Pourageaud F, De Mey JG (1998) Vasomotor responses in chronically hyperperfused and hypoperfused rat mesenteric arteries. Am J Physiol 274(4 Pt 2):H1301–H1307

    CAS  PubMed  Google Scholar 

  73. Bouvet C, de Chantemele EB, Guihot AL, Vessieres E, Bocquet A, Dumont O, Jardel A, Loufrani L, Moreau P, Henrion D (2007) Flow-induced remodeling in resistance arteries from obese Zucker rats is associated with endothelial dysfunction. Hypertension 50(1):248–254

    Article  CAS  PubMed  Google Scholar 

  74. Dumont O, Loufrani L, Henrion D (2007) Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 27(2):317–324

    Article  CAS  PubMed  Google Scholar 

  75. Tulis DA, Unthank JL, Prewitt RL (1998) Flow-induced arterial remodeling in rat mesenteric vasculature. Am J Physiol 274(3 Pt 2):H874–H882

    CAS  PubMed  Google Scholar 

  76. Castier Y, Brandes RP, Leseche G, Tedgui A, Lehoux S (2005) p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ Res 97(6):533–540

    Article  CAS  PubMed  Google Scholar 

  77. Matrougui K, Loufrani L, Heymes C, Levy BI, Henrion D (1999) Activation of AT(2) receptors by endogenous angiotensin II is involved in flow-induced dilation in rat resistance arteries. Hypertension 34(4 Pt 1):659–665

    Article  CAS  PubMed  Google Scholar 

  78. Matrougui K, Levy BI, Henrion D (2000) Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats. Br J Pharmacol 130(3):521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Etienne-Manneville S (2004) Actin and microtubules in cell motility: which one is in control? Traffic 5(7):470–477

    Article  CAS  PubMed  Google Scholar 

  80. Schnittler HJ, Schmandra T, Drenckhahn D (1998) Correlation of endothelial vimentin content with hemodynamic parameters. Histochem Cell Biol 110(2):161–167

    Article  CAS  PubMed  Google Scholar 

  81. Tuttle JL, Hahn TL, Sanders BM, Witzmann FA, Miller SJ, Dalsing MC, Unthank JL (2002) Impaired collateral development in mature rats. Am J Physiol Heart Circ Physiol 283(1):H146–H155

    Article  CAS  PubMed  Google Scholar 

  82. Li S, Piotrowicz RS, Levin EG, Shyy YJ, Chien S (1996) Fluid shear stress induces the phosphorylation of small heat shock proteins in vascular endothelial cells. Am J Physiol 271(3 Pt 1):C994–C1000

    CAS  PubMed  Google Scholar 

  83. de Chantemele EB, Vessieres E, Guihot AL, Dumont O, Loufrani L, Henrion D (2007) Reactive oxygen species have a central role in flow (shear stress)-induced remodeling in rat mesenteric resistance arteries. Hypertension (in press)

  84. Laurindo FR, Pedro Mde A, Barbeiro HV, Pileggi F, Carvalho MH, Augusto O, da Luz PL (1994) Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74(4):700–709

    Article  CAS  PubMed  Google Scholar 

  85. Tai LK, Okuda M, Abe J, Yan C, Berk BC (2002) Fluid shear stress activates proline-rich tyrosine kinase via reactive oxygen species-dependent pathway. Arterioscler Thromb Vasc Biol 22(11):1790–1796

    Article  CAS  PubMed  Google Scholar 

  86. Silacci P, Desgeorges A, Mazzolai L, Chambaz C, Hayoz D (2001) Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38(5):1162–1166

    Article  CAS  PubMed  Google Scholar 

  87. Xu Q, Hu Y, Kleindienst R, Wick G (1997) Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J Clin Invest 100(5):1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller SJ, Norton LE, Murphy MP, Dalsing MC, Unthank JL (2007) The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment. Am J Physiol Heart Circ Physiol 292(5):H2523–H2531

    Article  CAS  PubMed  Google Scholar 

  89. McNally EM (2007) New approaches in the therapy of cardiomyopathy in muscular dystrophy. Annu Rev Med 58:75–88

    Article  CAS  PubMed  Google Scholar 

  90. Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci U S A 101(47):16483–16488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wesselman JP, Kuijs R, Hermans JJ, Janssen GM, Fazzi GE, van Essen H, Evelo CT, Struijker-Boudier HA, De Mey JG (2004) Role of the Rhoa/Rho kinase system in flow-related remodeling of rat mesenteric small arteries in vivo. J Vasc Res 41(3):277–290

    Article  CAS  PubMed  Google Scholar 

  92. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res 98(2):176–185

    Article  CAS  PubMed  Google Scholar 

  93. Li F, Xia W, Li A, Zhao C, Sun R (2007) Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacol Res 55(1):64–71

    Article  CAS  PubMed  Google Scholar 

  94. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98(3):322–334

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Henrion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loufrani, L., Henrion, D. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 46, 451–460 (2008). https://doi.org/10.1007/s11517-008-0306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0306-2

Keywords

Navigation