Evaluation of signal space separation via simulation | Medical & Biological Engineering & Computing Skip to main content
Log in

Evaluation of signal space separation via simulation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Signal space separation (SSS) method is an advanced signal-processing approach that can be used to recover bio-magnetic signal and remove external disturbance in empirical magnetoencephalography (MEG) measurements. SSS is based on the solution of the quasi-static approximation of Maxwell equations (i.e., Laplace’s equation) which can be expressed as linear combinations of spherical harmonic functions. In applying SSS, MEG measurements can be split into two parts: brain signals and external interferences. In this paper, after a brief review of the basics of SSS, we evaluate SSS systematically via computer simulation and real MEG data. In the simulations of this paper, two types of interference sources with magnetic and electric current dipoles are used. The interference suppression effects and the quality of the reconstruction of the interested signal are investigated. Also, the degree of spherical harmonic functions and its relationship with signal reconstruction and interference suppression are studied thoroughly. Finally, we provide objective assessments of the advantages and limitations of the SSS approach, and its practical value in MEG measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahonen AI, Hämäläinen M, Ilmoniemi RJ, Kajola MJ, Knuutila JET, Simola JT, Vilkman VA (1993) Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng 40(9):859–869

    Article  Google Scholar 

  2. Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P (2004) Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp Neurol 190 (Suppl 1):s44–51

    Article  Google Scholar 

  3. Cohen D, Schläpfer U, Ahlfors S, Hämäläinen M, Halgren E (2002) New six-layer magnetically-shielded room for MEG. In: Proceedings of the 13th international conference on biomagnetism, pp 919–921

  4. Gauss CF (1838, 1839) Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtungen des magnetischen Verein im Jahre. Translated into English by Mrs. Sabine, revised by Sir John Herschel in Scientific Memoirs Selected. Trans Foreign Acad Learn Soc Foreign J 2:184–251

    Google Scholar 

  5. Golub G, van Loan C (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, London, pp 602–606

    MATH  Google Scholar 

  6. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J and Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  7. Harrison CGA (2006) Variation of spherical harmonic power as a function of harmonic order for Earth’s core and crustal magnetic field and for Mars’ crustal field. Geochem Geophys Geosyst 7(10). doi:10.1029/2006GC001334

  8. Hill EH (1954) The theory of vector spherical harmonics. Am J Phys 22:211–214

    Article  MATH  Google Scholar 

  9. Huang MX, Song T, Lee RR, Dale A, Halgren E, Schlapfer E, Parkonen L, Kajola M, Ahonen A, Cohen D (2006) New State of The Art MEG system at The University of California at San Diego. In: 15th international conference on biomagnetism, BIOMAG 2006, Vancouver, Canada, P309

  10. Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. Neuroreport, 16:81–84

    Article  Google Scholar 

  11. Imada T, Zhang Y, Cheour M, Taulu S, Ahonen A, Kuhl PK (2006) Infant speech perception activates Broca’s area: a developmental magnetoencephalography study. Neuroreport 17(10):957–962

    Article  Google Scholar 

  12. Jackson JD (1999) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  13. Makela JP, Forss N, Jaaskelainen J, Kirveskari E, Korvenoja A, Paetau R (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59(3):493–511

    Article  Google Scholar 

  14. Makeig S, Jung T, Bell AJ, and Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci 94:10979–10984

    Article  Google Scholar 

  15. Makeig S, Westfield W, Enghoff S, Jung TP, Townsend J, Courchesne E, and Sejnowski O (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694

    Article  Google Scholar 

  16. Nurminen J, Taulu S, Okada Y (2006) Hardware requirements of the signal space separation method. Mind and Brain V: Physics and the Brain. http://www.brain.hr/Mind&Brain5/Nurminen.pdf

  17. Pihko E, Lauronen L, Wikström H, Taulu S, Nurminen J, Kivitie-Kallio S, Okada Y (2004) Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns. Clin Neurophysiol 115(2):448–455

    Article  Google Scholar 

  18. Rush A (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47(4):276–286

    Article  MathSciNet  Google Scholar 

  19. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  Google Scholar 

  20. Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topogr 16(4):269–275

    Article  Google Scholar 

  21. Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: The signal space separation method. J Appl Phys 97(12):124905–124905–10

    Google Scholar 

  22. Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51(7):1759–1769

    Article  Google Scholar 

  23. Taulu S, Simola J, Kajola M (2005b) Applications of the signal space separation method. IEEE Trans Signal Process 53(9):3359–3372

    Article  MathSciNet  Google Scholar 

  24. Tesche CD, Uusitalo M, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroenceph Clin Neurophysiol 95:189–200

    Article  Google Scholar 

  25. Uusitalo MA, IImoniemi R (1997) The signal-space projection (SSP) method for seperating MEG or EEG into components. Med Biol Eng Comput 35:135–140

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Samu Taulu of Elekta Neuromag Oy for the helpful suggestions. This work was funded by VA Merit Review Grants awarded to Drs. Huang and Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, T., Gaa, K., Cui, L. et al. Evaluation of signal space separation via simulation. Med Biol Eng Comput 46, 923–932 (2008). https://doi.org/10.1007/s11517-007-0290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0290-y

Keywords

Navigation