Practical continuous-variable quantum key distribution with feasible optimization parameters | Science China Information Sciences Skip to main content

Advertisement

Log in

Practical continuous-variable quantum key distribution with feasible optimization parameters

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Continuous-variable quantum key distribution (CV-QKD) offers an approach to achieve a potential high secret key rate (SKR) in metropolitan areas. There are several challenges in developing a practical CV-QKD system from the laboratory to the real world. One of the most significant points is that it is really hard to adapt different practical optical fiber conditions for CV-QKD systems with unified hardware. Thus, how to improve the performance of practical CV-QKD systems in the field without modification of the hardware is very important. Here, a systematic optimization method, combining the modulation variance and error correction matrix optimization, is proposed to improve the performance of a practical CV-QKD system with a restricted capacity of postprocessing. The effect of restricted postprocessing capacity on the SKR is modeled as a nonlinear programming problem with modulation variance as an optimization parameter, and the selection of an optimal error correction matrix is studied under the same scheme. The results show that the SKR of a CV-QKD system can be improved by 24% and 200% compared with previous frequently used optimization methods theoretically with a transmission distance of 50 km. Furthermore, the experimental results verify the feasibility and robustness of the proposed method, where the achieved optimal SKR achieved practically deviates < 1.6% from the theoretical optimal value. Our results pave the way to deploy high-performance CV-QKD in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pirandola S, Andersen U L, Banchi L, et al. Advances in quantum cryptography. Adv Opt Photon, 2020, 12: 1012–1236

    Article  Google Scholar 

  2. Xu F, Ma X, Zhang Q, et al. Secure quantum key distribution with realistic devices. Rev Mod Phys, 2020, 92: 025002

    Article  MathSciNet  Google Scholar 

  3. Ren S, Wang Y, Su X. Hybrid quantum key distribution network. Sci China Inf Sci, 2022, 65: 200502

    Article  MathSciNet  Google Scholar 

  4. Joshi S K, Aktas D, Wengerowsky S, et al. A trusted node-free eight-user metropolitan quantum communication network. Sci Adv, 2020, 6: eaba0959

    Article  Google Scholar 

  5. Su X, Wang M, Yan Z, et al. Quantum network based on non-classical light. Sci China Inf Sci, 2020, 63: 180503

    Article  MathSciNet  Google Scholar 

  6. Wang S, Yin Z Q, He D Y, et al. Twin-field quantum key distribution over 830-km fibre. Nat Photon, 2022, 16: 154–161

    Article  Google Scholar 

  7. Lu C Y, Cao Y, Peng C Z, et al. Micius quantum experiments in space. Rev Mod Phys, 2022, 94: 035001

    Article  Google Scholar 

  8. Zhang G W, Chen W, Fan-Yuan G J, et al. Polarization-insensitive quantum key distribution using planar lightwave circuit chips. Sci China Inf Sci, 2022, 65: 200506

    Article  Google Scholar 

  9. Fan-Yuan G J, Chen W, Lu F Y, et al. A universal simulating framework for quantum key distribution systems. Sci China Inf Sci, 2020, 63: 180504

    Article  MathSciNet  Google Scholar 

  10. Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175–179

  11. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  Google Scholar 

  12. Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys Rev Lett, 2002, 88: 057902

    Article  Google Scholar 

  13. Weedbrook C, Lance A M, Bowen W P, et al. Quantum cryptography without switching. Phys Rev Lett, 2004, 93: 170504

    Article  Google Scholar 

  14. Lupo C, Ottaviani C, Papanastasiou P, et al. Continuous-variable measurement-device-independent quantum key distribution: composable security against coherent attacks. Phys Rev A, 2018, 97: 052327

    Article  Google Scholar 

  15. Weedbrook C, Pirandola S, García-Patrón R, et al. Gaussian quantum information. Rev Mod Phys, 2021, 84: 621–669

    Article  Google Scholar 

  16. Jouguet P, Kunz-Jacques S, Leverrier A, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat Photon, 2013, 7: 378–381

    Article  Google Scholar 

  17. Diamanti E, Leverrier A. Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy, 2015, 17: 6072–6092

    Article  MathSciNet  Google Scholar 

  18. Guo H, Li Z, Yu S, et al. Toward practical quantum key distribution using telecom components. Fundamental Res, 2021, 1: 96–98

    Article  Google Scholar 

  19. Zhang Y, Li Z, Chen Z, et al. Continuous-variable QKD over 50 km commercial fiber. Quantum Sci Technol, 2019, 4: 035006

    Article  Google Scholar 

  20. Zhang G, Haw J Y, Cai H, et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photon, 2019, 13: 839–842

    Article  Google Scholar 

  21. Wang H, Pi Y, Huang W, et al. High-speed Gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation. Opt Express, 2020, 28: 32882

    Article  Google Scholar 

  22. Wang H, Li Y, Pi Y, et al. Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area. Commun Phys, 2022, 5: 162

    Article  Google Scholar 

  23. Pan Y, Wang H, Shao Y, et al. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt Lett, 2022, 47: 3307–3310

    Article  Google Scholar 

  24. Wang X, Liu W, Wang P, et al. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys Rev A, 2017, 95: 062330

    Article  Google Scholar 

  25. Ren S, Yang S, Wonfor A, et al. Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator. Sci Rep, 2021, 11: 9454

    Article  Google Scholar 

  26. Huang D, Huang P, Lin D, et al. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci Rep, 2016, 6: 19201

    Article  Google Scholar 

  27. Jain N, Chin H M, Mani H, et al. Practical continuous-variable quantum key distribution with composable security. Nat Commun, 2022, 13: 4740

    Article  Google Scholar 

  28. Chin H M, Jain N, Zibar D, et al. Machine learning aided carrier recovery in continuous-variable quantum key distribution. npj Quantum Inf, 2021, 7: 20

    Article  Google Scholar 

  29. Jain N, Derkach I, Chin H M, et al. Modulation leakage vulnerability in continuous-variable quantum key distribution. Quantum Sci Technol, 2021, 6: 045001

    Article  Google Scholar 

  30. Lodewyck J, Debuisschert T, Tualle-Brouri R, et al. Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys Rev A, 2005, 72: 762–776

    Article  Google Scholar 

  31. Qi B, Lim C C W. Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator. Phys Rev Appl, 2018, 9: 054008

    Article  Google Scholar 

  32. Shao Y, Wang H, Pi Y, et al. Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Phys Rev A, 2021, 104: 032608

    Article  Google Scholar 

  33. Jouguet P, Kunz-Jacques S, High performance error correction for quantum key distribution using polar codes. Quantum Inf Comput 2014, 14: 329

    MathSciNet  Google Scholar 

  34. Milicevic M, Feng C, Zhang L M, et al. Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. npj Quantum Inf, 2018, 4: 21

    Article  Google Scholar 

  35. Mani H, Gehring T, Grabenweger P, et al. Multiedge-type low-density parity-check codes for continuous-variable quantum key distribution. Phys Rev A, 2021, 103: 062419

    Article  MathSciNet  Google Scholar 

  36. Jouguet P, Kunz-Jacques S, Leverrier A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys Rev A, 2011, 84: 062317

    Article  Google Scholar 

  37. Li Q, Wen X, Mao H, et al. An improved multidimensional reconciliation algorithm for continuous-variable quantum key distribution. Quantum Inf Process, 2019, 18: 25

    Article  MathSciNet  Google Scholar 

  38. Jeong S, Ha J. Efficiently encodable multi-edge type LDPC codes for long-distance quantum cryptography. In: Proceedings of International Conference on Information and Communication Technology Convergence (ICTC), 2018. 720–724

  39. Luby M G, Mitzenmacher M, Shokrollahi M A, et al. Improved low-density parity-check codes using irregular graphs. IEEE Trans Inform Theory, 2001, 47: 585–598

    Article  MathSciNet  Google Scholar 

  40. Jayasooriya S, Shirvanimoghaddam M, Ong L, et al. A new density evolution approximation for LDPC and multi-edge type LDPC codes. IEEE Trans Commun, 2016, 64: 4044–4056

    Google Scholar 

  41. Wang X Y, Zhang Y C, Li Z Y, et al. Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. Quantum Inf Comput 2017, 17: 1123–1134

    MathSciNet  Google Scholar 

  42. Kreinberg S, Koltchanov I, Richter A. Adding artificial noise for code rate matching in continuous-variable quantum key distribution. 2019. ArXiv:1905.04925

  43. Cheng J Y, Jiang X Q, Bai E J, et al. Rate adaptive reconciliation based on reed-solomon codes. In: Proceedings of the 6th International Conference on Communication, Image and Signal Processing (CCISP), 2021. 245–249

  44. Zhang M, Hai H, Feng Y, et al. Rate-adaptive reconciliation with polar coding for continuous-variable quantum key distribution. Quantum Inf Process, 2021, 20: 318

    Article  MathSciNet  Google Scholar 

  45. Jeong S, Jung H, Ha J. Rate-compatible multi-edge type low-density parity-check code ensembles for continuous-variable quantum key distribution systems. npj Quantum Inf, 2022, 8: 1

    Article  Google Scholar 

  46. Zhou C, Wang X, Zhang Y, et al. Continuous-variable quantum key distribution with rateless reconciliation protocol. Phys Rev Appl, 2019, 12: 054013

    Article  Google Scholar 

  47. Symul T, Alton D J, Assad S M, et al. Security of post-selection based continuous variable quantum key distribution in the presence of Gaussian added noise. In: Proceedings of Quantum-Atom Optics Downunder, 2007

  48. Fiurášek J, Cerf N J. Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys Rev A, 2012, 86: 060302

    Article  Google Scholar 

  49. Walk N, Ralph T C, Symul T, et al. Security of continuous-variable quantum cryptography with Gaussian postselection. Phys Rev A, 2013, 87: 20303

    Article  Google Scholar 

  50. García-Patrón R, Cerf N J. Continuous-variable quantum key distribution protocols over noisy channels. Phys Rev Lett, 2009, 102: 130501

    Article  Google Scholar 

  51. Wang X, Zhang Y, Yu S, et al. High-speed implementation of length-compatible privacy amplification in continuous-variable quantum key distribution. IEEE Photon J, 2018, 10: 1–9

    Google Scholar 

  52. Pirandola S. Composable security for continuous variable quantum key distribution: trust levels and practical key rates in wired and wireless networks. Phys Rev Res, 2021, 3: 043014

    Article  Google Scholar 

  53. Pirandola S. Limits and security of free-space quantum communications. Phys Rev Res, 2021, 3: 013279

    Article  Google Scholar 

  54. Lodewyck J, Bloch M, García-Patrón R, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys Rev A, 2007, 76: 042305

    Article  Google Scholar 

  55. Li Y, Zhang X, Li Y, et al. High-throughput GPU layered decoder of quasi-cyclic multi-edge type low density parity check codes in continuous-variable quantum key distribution systems. Sci Rep, 2020, 10: 14561

    Article  Google Scholar 

  56. Pirandola S, Laurenza R, Ottaviani C, et al. Fundamental limits of repeaterless quantum communications. Nat Commun, 2021, 8: 15043

    Article  Google Scholar 

  57. Jeong S, Ha J. On the design of multi-edge type low-density parity-check codes. IEEE Trans Commun, 2019, 67: 6652–6667

    Article  Google Scholar 

  58. Hu X Y, Eleftheriou E, Arnold D M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans Inform Theory, 2005, 51: 386–398

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Program of China (Grant No. 2020YFA0309704), National Natural Science Foundation of China (Grant Nos. U19A2076, 62101516, 62171418, 62201530), Sichuan Science and Technology Program (Grant Nos. 2022ZYD0118, 2022YFG0330, 2022ZDZX0009), Basic Research Program of China (Grant No. JCKY2021210B059), Chengdu Key Research and Development Support Program (Grant No. 2021-YF05-02430-GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Bingjie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yang, J., Zhang, T. et al. Practical continuous-variable quantum key distribution with feasible optimization parameters. Sci. China Inf. Sci. 66, 180507 (2023). https://doi.org/10.1007/s11432-022-3712-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3712-3

Keywords

Navigation