Neuroimaging of inflammation in alcohol use disorder: a review | Science China Information Sciences Skip to main content

Advertisement

Log in

Neuroimaging of inflammation in alcohol use disorder: a review

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Alcohol use disorder (AUD) is a global health concern associated with several comorbidities. Various health problems related to AUD, such as cognitive deficits, have been linked to neuroinflammation. Alcohol use has been associated with changes in neuroimmune activity, although current literature has yielded mixed results. For example, markers of gliosis, including translocator protein 18-kDa (TSPO), pro-inflammatory cytokines, glutamate (Glu), and myo-inositol (mI), are disrupted in the alcohol-dependent brain. Further, neuroinflammatory-related phenomena including membrane turnover, blood brain barrier (BBB) permeability, and adenosine release have also shown alterations in AUD. However, current literature remains inconclusive about the directionality of these changes. Both in vivo and in vitro studies have provided insight on the relationship between alcohol use and neuroinflammatory processes, suggesting considerable treatment potential for alcohol use disorder and its inflammatory comorbidities. Here, we review current neuroimaging literature assessing the impacts of alcohol use on neuroimmune activity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: APA, 2013

    Book  Google Scholar 

  2. Griswold M G, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2018, 392: 1015–1035

    Article  Google Scholar 

  3. Brust J. Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. J Environ Res Public Health, 2010, 7: 1540–1557

    Article  Google Scholar 

  4. Crews F T, Lawrimore C J, Walter T J, et al. The role of neuroimmune signaling in alcoholism. Neuropharmacology, 2017, 122: 56–73

    Article  Google Scholar 

  5. Kohno M, Link J, Dennis L E, et al. Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav, 2019, 179: 34–42

    Article  Google Scholar 

  6. Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addiction Biol, 2013, 18: 203–213

    Article  Google Scholar 

  7. Gupta S, Warner J. Alcohol-related dementia: a 21st-century silent epidemic? British J Psychiatry, 2008, 193: 351–353

    Article  Google Scholar 

  8. Davies S J, Pandit S A, Feeney A, et al. Is there cognitive impairment in clinically ‘healthy’ abstinent alcohol dependence? Alcohol Alcoholism, 2005, 40: 498–503

    Article  Google Scholar 

  9. Coleman J L G, Zou J, Crews F T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation, 2017, 14: 22

    Article  Google Scholar 

  10. Kane C J M, Drew P D. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol, 2016, 100: 951–959

    Article  Google Scholar 

  11. Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflam-mation in the adult rat brain. Neuroscience, 2013, 244: 147–158

    Article  Google Scholar 

  12. Robinson G M, Orrego H, Israel Y, et al. Low-molecular-weight polyethylene glycol as a probe of gastrointestinal permeability after alcohol ingestion. Digest Dis Sci, 1981, 26: 971–977

    Article  Google Scholar 

  13. Bjarnason I, Ward K, Peters T J. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet, 1984, 323: 179–182

    Article  Google Scholar 

  14. Keshavarz´ıan A F, Jeremy Z, Vaeth J, et al. The differing effects of acute and chronic alcohol on gastric and intestinal permeability. Am J Gastroenterol, 1994, 89: 2205–2211

    Google Scholar 

  15. Leclercq S, Cani P D, Neyrinck A M, et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun, 2012, 26: 911–918

    Article  Google Scholar 

  16. Ellis F W. Effect of ethanol on plasma corticosterone levels. J Pharmacol Exp Ther, 1966, 153: 121–127

    Google Scholar 

  17. Frank M G, Miguel Z D, Watkins L R, et al. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. Coli Lipopolysaccharide. Brain Behav Immun, 2010, 24: 19–30

    Article  Google Scholar 

  18. Woodcock E A, Hillmer A T, Mason G F, et al. Imaging biomarkers of the neuroimmune system among substance use disorders: a systematic review. Mol Neuropsychiatry, 2019, 5: 125–146

    Article  Google Scholar 

  19. Tyler R E, Kim S W, Guo M, et al. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: a comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci, 2019, 50: 1831–1842

    Google Scholar 

  20. Saba W, Goutal S, Auvity S, et al. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using (18) F-DPA-714. Addiction Biol, 2018, 23: 1000–1009

    Article  Google Scholar 

  21. Hillmer A T, Sandiego C M, Hannestad J, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry, 2017, 22: 1759–1766

    Article  Google Scholar 

  22. Kalk N J, Guo Q, Owen D, et al. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a PBR28 PET study. Transl Psychiatry, 2017, 7: 996

    Article  Google Scholar 

  23. Kim S W, Wiers C E, Tyler R, et al. Influence of alcoholism and cholesterol on TSPO binding in brain: PET PBR28 studies in humans and rodents. Neuropsychopharmacol, 2018, 43: 1832–1839

    Article  Google Scholar 

  24. Gundersen H, van Wageningen H, Grüner R. Alcohol-induced changes in cerebral blood flow and cerebral blood volume in social drinkers. Alcohol Alcoholism, 2012, 48: 160–165

    Article  Google Scholar 

  25. Ende G, Hermann D, Demirakca T, et al. Loss of control of alcohol use and severity of alcohol dependence in non-treatment-seeking heavy drinkers are related to lower glutamate in frontal white matter. Alcoholism: Clinical Exp Res, 2013, 37: 1643–1649

    Google Scholar 

  26. Cheng H, Kellar D, Lake A, et al. Effects of alcohol cues on MRS glutamate levels in the anterior cingulate. Alcohol Alcoholism, 2018, 53: 209–215

    Article  Google Scholar 

  27. Bagga D, Khushu S, Modi S, et al. Impaired visual information processing in alcohol-dependent subjects: a proton magnetic resonance spectroscopy study of the primary visual cortex. J Stud Alcohol Drugs, 2014, 75: 817–826

    Article  Google Scholar 

  28. Mon A, Durazzo T C, Meyerhoff D J. Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug Alcohol Dependence, 2012, 125: 27–36

    Article  Google Scholar 

  29. Thoma R, Mullins P, Ruhl D, et al. Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacol, 2011, 36: 1359–1365

    Article  Google Scholar 

  30. Valenta J P, Gonzales R A. Chronic intracerebroventricular infusion of monocyte chemoattractant protein-1 leads to a persistent increase in sweetened ethanol consumption during operant self-administration but does not influence sucrose consumption in long-evans rats. Alcohol Clin Exp Res, 2016, 40: 187–195

    Article  Google Scholar 

  31. Hermann D, Weber-Fahr W, Sartorius A, et al. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry, 2012, 71: 1015–1021

    Article  Google Scholar 

  32. Zahr N M, Mayer D, Rohlfing T, et al. Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol, 2014, 24: 654–664

    Article  Google Scholar 

  33. Meyerhoff D J, Blumenfeld R, Truran D, et al. Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites. Alcoholism-Clin Exp Res, 2004, 28: 650–661

    Article  Google Scholar 

  34. Schweinsburg B C, Taylor M J, Alhassoon O M, et al. Chemical pathology in brain white matter of recently detoxified alcoholics: a 1H magnetic resonance spectroscopy investigation of alcohol-associated frontal lobe injury. Alcoholism Clin Exp Res, 2001, 25: 924–934

    Article  Google Scholar 

  35. Quarantelli M. MRI/MRS in neuroinflammation: methodology and applications. Clin Transl Imag, 2015, 3: 475–489

    Article  Google Scholar 

  36. Bendszus M, Weijers H G, Wiesbeck G, et al. Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. Am J Neuroradiol, 2001, 22: 1926–1932

    Google Scholar 

  37. Parks M H, Dawant B M, Riddle W R, et al. Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcoholism Clin Exp Res, 2002, 26: 1368–1380

    Article  Google Scholar 

  38. de Souza R S M, Rosa M, Rodrigues T M, et al. Lower choline rate in the left prefrontal cortex is associated with higher amount of alcohol use in alcohol use disorder. Front Psychiatry, 2018, 9: 563

    Article  Google Scholar 

  39. Ende G, Welzel H, Walter S, et al. Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry, 2005, 58: 974–980

    Article  Google Scholar 

  40. Haorah J, Schall K, Ramirez S H, et al. Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associated with alcohol abuse. Glia, 2008, 56: 78–88

    Article  Google Scholar 

  41. Monnig M A, Caprihan A, Yeo R A, et al. Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychol Addictive Behavs, 2013, 27: 455–465

    Article  Google Scholar 

  42. Volkow N D, Kim S W, Wang G J, et al. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain. Neuroimage, 2013, 64: 277–283

    Article  Google Scholar 

  43. Tanabe J, Yamamoto D J, Sutton B, et al. Effects of alcohol and acetate on cerebral blood flow: a pilot study. Alcohol Clin Exp Res, 2019, 43: 2070–2078

    Article  Google Scholar 

  44. Courtney K E, Infante M A, Brown G G, et al. The relationship between regional cerebral blood flow estimates and alcohol problems at 5-year follow-up: the role of level of response. Alcohol Clin Exp Re, 2019, 43: 812–821

    Article  Google Scholar 

  45. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci, 1993, 15: 289–298

    Article  Google Scholar 

  46. Chang L, Munsaka S M, Kraft-Terry S, et al. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol, 2013, 8: 576–593

    Article  Google Scholar 

  47. Meyerhoff D J. Effects of alcohol and HIV infection on the central nervous system. Alcohol Res Health, 2001, 25: 288–298

    Google Scholar 

  48. Fawcett J W, Asher R A. The glial scar and central nervous system repair. Brain Res Bull, 1999, 49: 377–391

    Article  Google Scholar 

  49. Hoogland I C M, Houbolt C, van Westerloo D J, et al. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation, 2015, 12: 114

    Article  Google Scholar 

  50. Perry V H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurode-generative disease. Brain Behav Immun, 2004, 18: 407–413

    Article  Google Scholar 

  51. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol, 2016, 53: 1181–1194

    Article  Google Scholar 

  52. Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007, 8: 57–69

    Article  Google Scholar 

  53. Yawata I, Takeuchi H, Doi Y, et al. Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci, 2008, 82: 1111–1116

    Article  Google Scholar 

  54. Freeman K, Brureau A, Vadigepalli R, et al. Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. J Neuroinflammation, 2012, 9: 97

    Article  Google Scholar 

  55. Sweet M J, Hume D A. Endotoxin signal transduction in macrophages. J Leukocyte Biol, 1996, 60: 8–26

    Article  Google Scholar 

  56. Breese G R, Knapp D J, Overstreet D H, et al. Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacol, 2008, 33: 867–876

    Article  Google Scholar 

  57. Heberlein A, Kaser M, Lichtinghagen R, et al. TNF-alpha and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol, 2014, 48: 671–676

    Article  Google Scholar 

  58. Leclercq S, de Saeger C, Delzenne N, et al. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry, 2014, 76: 725–733

    Article  Google Scholar 

  59. Nishiyama A, Komitova M, Suzuki R, et al. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Rev Neurosci, 2009, 10: 9–22

    Article  Google Scholar 

  60. Harper C. The neuropathology of alcohol-related brain damage. Alcohol Alcoholism, 2009, 44: 136–140

    Article  Google Scholar 

  61. Gallucci M, Amicarelli I, Rossi A, et al. MR imaging of white matter lesions in uncomplicated chronic alcoholism. J Comput Assisted Tomography, 1989, 13: 395–398

    Article  Google Scholar 

  62. He J, Overstreet D H, Crews F T. Abstinence from moderate alcohol self-administration alters progenitor cell proliferation and differentiation in multiple brain regions of male and female P rats. Alcoholism-Clin Exp Res, 2009, 33: 129–138

    Article  Google Scholar 

  63. Helfer J L, Calizo L H, Dong W K, et al. Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats. J Comp Neurol, 2009, 514: 259–271

    Article  Google Scholar 

  64. Albrecht D S, Granziera C, Hooker J M, et al. In vivo imaging of human neuroinflammation. ACS Chem Neurosci, 2016, 7: 470–483

    Article  Google Scholar 

  65. Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol, 2016, 37: 608–620

    Article  Google Scholar 

  66. Adermark L, Bowers M S. Disentangling the role of astrocytes in alcohol use disorder. Alcohol Clin Exp Res, 2016, 40: 1802–1816

    Article  Google Scholar 

  67. Blanco A M, Vallés S L, Pascual M, et al. Involvement of TLR4/Type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol, 2005, 175: 6893–6899

    Article  Google Scholar 

  68. Bull C, Freitas K C, Zou S, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacol, 2014, 39: 2835–2845

    Article  Google Scholar 

  69. Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcoholism Clinical Exp Res, 1999, 23: 164–168

    Article  Google Scholar 

  70. Miguel-Hidalgo J J, Overholser J C, Meltzer H Y, et al. Reduced glial and neuronal packing density in the orbitofrontal cortex in alcohol dependence and its relationship with suicide and duration of alcohol dependence. Alcoholism Clin Exp Res, 2006, 30: 1845–1855

    Article  Google Scholar 

  71. Miguel-Hidalgo J J, Overholser J C, Meltzer H Y, et al. Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Alcoholism Clin Exp Res, 2002, 30: 1845–1855

    Article  Google Scholar 

  72. Chen M K, Guilarte T R. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Therapeutics, 2008, 118: 1–17

    Article  Google Scholar 

  73. Gulyás B, Makkai B, Kása P, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. NeuroChem Int, 2009, 54: 28–36

    Article  Google Scholar 

  74. Marshall S A, McClain J A, Kelso M L, et al. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis, 2013, 54: 239–251

    Article  Google Scholar 

  75. Kreisl W C, Jenko K J, Hines C S, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cerebral Blood Flow Metabolism, 2013, 33: 53–58

    Article  Google Scholar 

  76. Gavish M, Veenman L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv Pharmacol, 2018, 82: 103–136

    Article  Google Scholar 

  77. Jaipuria G, Leonov A, Giller K, et al. Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat Commun, 2017, 8: 14893

    Article  Google Scholar 

  78. Brien S E, Ronksley P E, Turner B J, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. Biomed J, 2011, 342: d636

    Google Scholar 

  79. Kahl K G, Greggersen W, Schweiger U, et al. Prevalence of the metabolic syndrome in men and women with alcohol dependence: results from a cross-sectional study during behavioural treatment in a controlled environment. Addiction, 2010, 105: 1921–1927

    Article  Google Scholar 

  80. Owen D R, Fan J, Campioli E, et al. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J, 2017, 474: 3985–3999

    Article  Google Scholar 

  81. Wiers C E, de Carvalho L M, Hodgkinson C A, et al. TSPO polymorphism in individuals with alcohol use disorder: association with cholesterol levels and withdrawal severity. Addiction Biol, 2019. doi: 10.1111/adb.12838

    Google Scholar 

  82. Ikawa M, Lohith T G, Shrestha S, et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med, 2017, 58: 320–325

    Article  Google Scholar 

  83. Chakraborty S, Bhattacharyya R, Banerjee D. Infections: a possible risk factor for type 2 diabetes. Adv Clin Chem, 2017, 80: 227–251

    Article  Google Scholar 

  84. Harrison N A, Cooper E, Dowell N G, et al. Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry, 2015, 78: 49–57

    Article  Google Scholar 

  85. He J, Crews F T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol, 2008, 210: 349–358

    Article  Google Scholar 

  86. Coleman J L G, Zou J, Qin L, et al. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun, 2018, 72: 61–77

    Article  Google Scholar 

  87. Crews F T, Vetreno R P. Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol, 2014, 118: 315–357

    Article  Google Scholar 

  88. Neupane S P, Skulberg A, Skulberg K R, et al. Cytokine changes following acute ethanol intoxication in healthy men: a crossover study. Mediators Inflamm, 2016, 2016: 3758590

    Article  Google Scholar 

  89. Serres S, Anthony D C, Jiang Y, et al. Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci, 2009, 29: 4820–4828

    Article  Google Scholar 

  90. Sankar S B, Pybus A F, Liew A, et al. Low cerebral blood flow is a non-invasive biomarker of neuroinflammation after repetitive mild traumatic brain injury. Neurobiol Dis, 2019, 124: 544–554

    Article  Google Scholar 

  91. Haroon E, Miller A H, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacol, 2017, 42: 193–215

    Article  Google Scholar 

  92. Bauer J, Pedersen A, Scherbaum N, et al. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacol, 2013, 38: 1401–1408

    Article  Google Scholar 

  93. de Witte P. Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addictive Behavs, 2004, 29: 1325–1339

    Article  Google Scholar 

  94. Lee E, Jang D P, Kim J J, et al. Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport, 2007, 18: 1511–1514

    Article  Google Scholar 

  95. Licata S C, Renshaw P F. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann New York Acad Sci, 2010, 1187: 148–171

    Article  Google Scholar 

  96. Ramadan S, Lin A, Stanwell P. Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed, 2013, 26: 1630–1646

    Article  Google Scholar 

  97. Umhau J C, Momenan R, Schwandt M L, et al. Effect of acamprosate on magnetic resonance spectroscopy measures of central glutamate in detoxified alcohol-dependent individuals: a randomized controlled experimental medicine study. JAMA Psychiatry, 2010, 67: 1069–1077

    Google Scholar 

  98. Yeo R A, Thoma R J, Gasparovic C, et al. Neurometabolite concentration and clinical features of chronic alcohol use: a proton magnetic resonance spectroscopy study. Psychiatry Res-Neuroimag, 2013, 211: 141–147

    Article  Google Scholar 

  99. Chang L, Ernst T, Poland R E, et al. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci, 1996, 58: 2049–2056

    Article  Google Scholar 

  100. Chang L, Ernst T, Witt M D, et al. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naïve HIV patients. Neuroimage, 2002, 17: 1638–1648

    Article  Google Scholar 

  101. Schneider J R, Bandiera S, Souza D G, et al. N-acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res, 2017, 42: 2135–2141

    Article  Google Scholar 

  102. Ross B D. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; Myo-inositol and related metabolites. NMR Biomedicine, 1991, 4: 59–63

    Article  Google Scholar 

  103. Schweinsburg B C, Taylor M J, Videen J S, et al. Elevated myo-inositol in gray matter of recently detoxified but not long-term abstinent alcoholics: a preliminary MR spectroscopy study. Alcoholism Clin Exp Res, 2000, 24: 699–705

    Article  Google Scholar 

  104. de Groot N S, Burgas M T. Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? Cellular Molecular Life Sci, 2015, 72: 4795–4805

    Article  Google Scholar 

  105. Chang L, Ernst T, Leonido-Yee M, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology, 1999, 53: 782–782

    Article  Google Scholar 

  106. Chang L, Ernst T, Leonido-Yee M, et al. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology, 1999, 52: 100

    Article  Google Scholar 

  107. Mader I, Rauer S, Gall P, et al. (1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Rad, 2008, 67: 250–257

    Article  Google Scholar 

  108. S¨amann P G, Schlegel J, Müller G, et al. Serial proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis. Am J Neuroradiol, 2003, 24: 2015

    Google Scholar 

  109. Lee N M, Friedman H J, Loh H H. Effect of acute and chronic ethanol treatment on rat brain phospholipid turnover. Biochem Pharmacol, 1980, 29: 2815–2818

    Article  Google Scholar 

  110. Obermeier B, Daneman R, Ransohoff R M. Development, maintenance and disruption of the blood-brain barrier. Nat Med, 2013, 19: 1584–1596

    Article  Google Scholar 

  111. Banks W A, Kastin A J, Gutierrez E G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett, 1994, 179: 53–56

    Article  Google Scholar 

  112. Banks W A, Kastin A J, Broadwell R D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation, 1995, 2: 241–248

    Article  Google Scholar 

  113. Estes M L, McAllister A K. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation! Brain Pathol, 2014, 24: 623–630

    Article  Google Scholar 

  114. Rebeles F, Fink J, Anzai Y, et al. Blood-brain barrier imaging and therapeutic potentials. Top Magn Reson Imag, 2006, 17: 107–116

    Article  Google Scholar 

  115. Runge V M, Schoerner W, Niendorf H P, et al. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imag, 1985, 3: 27–35

    Article  Google Scholar 

  116. Ivanidze J, Mackay M, Hoang A, et al. Dynamic contrast-enhanced MRI reveals unique blood-brain barrier permeability characteristics in the hippocampus in the normal brain. Am J Neuroradiol, 2019, 40: 408–411

    Google Scholar 

  117. Alexander A L, Lee J E, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics, 2007, 4: 316–329

    Article  Google Scholar 

  118. Abbott N J, Patabendige A A K, Dolman D E M, et al. Structure and function of the blood-brain barrier. NeuroBiol Dis, 2010, 37: 13–25

    Article  Google Scholar 

  119. Le Bihan D, Mangin J F, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag, 2001, 13: 534–546

    Article  Google Scholar 

  120. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci, 2008, 34: 51–61

    Article  Google Scholar 

  121. Pierpaoli C, Jezzard P, Basser P J, et al. Diffusion tensor MR imaging of the human brain. Radiology, 1996, 201: 637–648

    Article  Google Scholar 

  122. Inglese M, Bester M. Diffusion imaging in multiple sclerosis: research and clinical implications. NMR Biomed, 2010, 23: 865–872

    Article  Google Scholar 

  123. Smith S M, Jenkinson M, Woolrich M W, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004, 23: 208–219

    Article  Google Scholar 

  124. Smith S M, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 2006, 31: 1487–1505

    Article  Google Scholar 

  125. Shiu C, Barbier E, Cello F D, et al. HIV-1 gp120 as well as alcohol affect blood-brain barrier permeability and stress fiber formation: involvement of reactive oxygen species. Alcoholism Clin Exp Res, 2007, 31: 130–137

    Article  Google Scholar 

  126. Toborek M, Lee Y W, Flora G, et al. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol, 2005, 25: 181–199

    Article  Google Scholar 

  127. Petrache I, Birukova A, Ramirez S I, et al. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol, 2003, 28: 574–581

    Article  Google Scholar 

  128. Schwartz J A, Speed N M, Gross M D, et al. Acute effects of alcohol administration on regional cerebral blood flow: the role of acetate. Alcoholism Clin Exp Res, 1993, 17: 1119–1123

    Article  Google Scholar 

  129. Beamer E, Gölöncsér F, Horváth G, et al. Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology, 2016, 104: 94–104

    Article  Google Scholar 

  130. Dai S S, Zhou Y G, Li W, et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci, 2010, 30: 5802–5810

    Article  Google Scholar 

  131. Ferrante A, de Simone R, Ajmone-Cat M A, et al. Adenosine receptors and neuroinflammation. In: The Adenosine Receptors. Cham: Humana Press, 2018. 217–237

    Chapter  Google Scholar 

  132. Boison D. Adenosine dysfunction in epilepsy. Glia, 2012, 60: 1234–1243

    Article  Google Scholar 

  133. da Rocha Lapa F, Jünior S J M, Cerutti M L, et al. Pharmacology of adenosine receptors and their signaling role in immunity and inflammation. In: Pharmacology and Therapeutics. New York: IntechOpen, 2014

    Google Scholar 

  134. Nagy L E, Diamond I, Casso D J, et al. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem, 1990, 265: 1946–1951

    Article  Google Scholar 

  135. Clasadonte J, McIver S R, Schmitt L I, et al. Chronic sleep restriction disrupts sleep homeostasis and behavioral sensitivity to alcohol by reducing the extracellular accumulation of adenosine. J Neurosci, 2014, 34: 1879–1891

    Article  Google Scholar 

  136. Sharma R, Sahota P, Thakkar M M. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep, 2014, 37: 525–533

    Article  Google Scholar 

  137. Wiers C E. Adenosine sheds light on the relationship between alcohol and sleep. J Neurosci, 2014, 34: 7733–7734

    Article  Google Scholar 

  138. Ishibashi K, Tago T, Wagatsuma K, et al. Type 1 metabotropic glutamate receptors measured with a novel PET ligand, 11C-ITMM, in patients with cerebellar ataxia. J Nuclear Med, 2018, 59: 1696

    Google Scholar 

  139. Guo M, Gao Z G, Tyler R, et al. Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for Positron Emission Tomography imaging. J Med Chem, 2018, 61: 9966–9975

    Article  Google Scholar 

  140. Vuorimaa A, Rissanen E, Airas L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neu-rodegenerative disease. Contrast Media Molecular Imag, 2017, 2017: 6975841

    Article  Google Scholar 

  141. Kreft S, Bier D, Holschbach M H, et al. New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl Med Biol, 2017, 44: 69–77

    Article  Google Scholar 

  142. Elmenhorst E M, Elmenhorst D, Benderoth S, et al. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors. Proc Natl Acad Sci USA, 2018, 115: 8009–8014

    Article  Google Scholar 

  143. Carmichael F, Salvida V, Varghese G, et al. Ethanol-induced increase in portal blood flow: role of acetate A1 and A2-adenosine receptors. Am J Physiol, 1988, 255: 417–423

    Google Scholar 

  144. Orrego H, Carmichael F, Saldiva V, et al. Ethanol-induced increase in portal blood flow: Role of adenosine. Am J Physiol, 1988, 254: 495–501

    Google Scholar 

  145. Fan J, Yang J, Jiang Z. Prediction of central nervous system side effects through drug permeability to blood-brain barrier and recommendation algorithm. J Comput Biol, 2018, 25: 435–443

    Article  Google Scholar 

  146. Dirchwolf M. Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J Hepatol, 2015, 7: 1974–1981

    Article  Google Scholar 

  147. Huang J V, Schooling C M. Inflammation and bone mineral density: a mendelian randomization study. Sci Rep, 2017, 7: 8666

    Article  Google Scholar 

  148. Schuckit M A. Alcohol-use disorders. Lancet, 2009, 373: 492–501

    Article  Google Scholar 

  149. Yudkin J S, Kumari M, Humphries S E, et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis, 2000, 48: 209–214

    Article  Google Scholar 

  150. Barton E A, Baker C, Leasure J L. Investigation of sex differences in the microglial response to binge ethanol and exercise. Brain Sci, 2017, 7: 139

    Article  Google Scholar 

  151. Landolt H P. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol, 2008, 75: 2070–2079

    Article  Google Scholar 

  152. Huang Z L, Urade Y, Hayaishi O. The role of adenosine in the regulation of sleep. Current Top Med Chem, 2011, 11: 1047–1057

    Article  Google Scholar 

  153. Huang Z L, Zhang Z, Qu W M. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol, 2014, 119: 349–371

    Article  Google Scholar 

  154. Angarita G A, Emadi N, Hodges S, et al. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review. Addict Sci Clin Pract, 2016, 11: 9

    Article  Google Scholar 

  155. Colrain I M, Turlington S, Baker F C. Impact of alcoholism on sleep architecture and EEG power spectra in men and women. Sleep, 2009, 32: 1341–1352

    Article  Google Scholar 

  156. Hasler B P, Pedersen S L. Sleep and circadian risk factors for alcohol problems: a brief overview and proposed mechanisms. Current Opinion Psychol, 2019, 34: 57–62

    Article  Google Scholar 

  157. Hasler B P, Soehner A M, Clark D B. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol, 2015, 49: 377–387

    Article  Google Scholar 

  158. Roehrs T, Roth T. Sleep, sleepiness, sleep disorders and alcohol use and abuse. Sleep Med Rev, 2001, 5: 287–297

    Article  Google Scholar 

  159. Dinges D F, Douglas S D, Hamarman S, et al. Sleep deprivation and human immune function. Adv Neuroimmunol, 1995, 5: 97–110

    Article  Google Scholar 

  160. Manchanda S, Singh H, Kaur T, et al. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol Cell Biochem, 2018, 449: 63–72

    Article  Google Scholar 

  161. Shearer W T, Reuben J M, Mullington J M, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol, 2001, 107: 165–170

    Article  Google Scholar 

  162. Wisor J P, Schmidt M A, Clegern W C. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep, 2011, 34: 261–272

    Article  Google Scholar 

  163. Zhu B, Dong Y, Xu Z, et al. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis, 2012, 48: 348–355

    Article  Google Scholar 

  164. Sharma R, Engemann S C, Sahota P, et al. Effects of ethanol on extracellular levels of adenosine in the basal forebrain: an in vivo microdialysis study in freely behaving rats. Alcoholism-Clin Exp Res, 2010, 34: 813–818

    Article  Google Scholar 

  165. Thakkar M M, Engemann S C, Sharma R, et al. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol. Alcoholism-Clin Exp Res, 2010, 34: 997–1005

    Article  Google Scholar 

  166. Nam H W, McIver S R, Hinton D J, et al. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res, 2012, 36: 1117–1125

    Article  Google Scholar 

  167. Sharma R, Sahota P, Thakkar M M. Alcoholism and sleep. In: The Behavioral, Molecular, Pharmacological, and Clinical Basis of the Sleep-Wake Cycle. London: Academic Press, 2019. 159–192

    Chapter  Google Scholar 

  168. Knapp C M, Ciraulo D A, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum. Behavioural Brain Res, 2014, 274: 291–301

    Article  Google Scholar 

  169. Ruby C L, Vadnie C A, Hinton D J, et al. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light. Neuropsychopharmacol, 2014, 39: 2432–2440

    Article  Google Scholar 

  170. Garland E L, Froeliger B, Howard M O. Mindfulness training targets neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Front Psychiatry, 2014, 4: 173

    Article  Google Scholar 

  171. Stevens F L, Hurley R A, Taber K H. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsy-chiatry Clinical Neurosci, 2011, 23: 121–125

    Article  Google Scholar 

  172. Cheetham A, Allen N B, Whittle S, et al. Volumetric differences in the anterior cingulate cortex prospectively predict alcohol-related problems in adolescence. Psychopharmacology, 2014, 231: 1731–1742

    Article  Google Scholar 

  173. Cardenas V A, Studholme C, Gazdzinski S, et al. Deformation-based morphometry of brain changes in alcohol dependence and abstinence. Neuroimage, 2007, 34: 879–887

    Article  Google Scholar 

  174. Vollst¨adt-Klein S, Hermann D, Rabinstein J, et al. Increased activation of the ACC during a spatial working memory task in alcohol-dependence versus heavy social drinking. Alcoholism-Clin Exp Res, 2010, 34: 771–776

    Article  Google Scholar 

  175. Dev S I, Moore R C, Soontornniyomkij B, et al. Peripheral inflammation related to lower fMRI activation during a working memory task and resting functional connectivity among older adults: a preliminary study. Int J Geriatr Psychiatry, 2017, 32: 341–349

    Article  Google Scholar 

  176. Passamonti L, Tsvetanov K A, Jones P S, et al. Neuroinflammation and functional connectivity in alzheimer’s disease: interactive influences on cognitive performance. J Neurosci, 2019, 39: 7218–7226

    Article  Google Scholar 

  177. O’Neill J, Cardenas V A, Meyerhoff D J. Effects of abstinence on the brain: quantitative magnetic resonance imaging and magnetic resonance spectroscopic imaging in chronic alcohol abuse. Alcoholism Clin Exp Res, 2001, 25: 1673–1682

    Article  Google Scholar 

  178. Sullivan E V, Zahr N M. Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on “Increased MCP-1 and microglia in various regions of human alcoholic brain”. Exp Neurology, 2008, 213: 10–17

    Article  Google Scholar 

  179. Ciarmiello A. Imaging of neuroinflammation. Eur J Nucl Med Mol Imag, 2011, 38: 2198–2201

    Article  Google Scholar 

  180. Kessler R M, Goble J C, Bird J H, et al. Measurement of blood-brain barrier permeability with positron emission tomography and EDTA. J Cerebral Blood Flow Metabolism, 1984, 4: 323–328

    Article  Google Scholar 

  181. Pozzilli C, Bernardi S, Mansi L, et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. J Neurol Neurosurgery Psychiatry, 1988, 51: 1058–1062

    Article  Google Scholar 

  182. Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience, 2009, 158: 1161–1173

    Article  Google Scholar 

  183. Hafkemeijer A, Altmann-Schneider I, de Craen A J M, et al. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell, 2014, 13: 1068–1074

    Article  Google Scholar 

  184. Paul C A, Au R, Fredman L, et al. Association of alcohol consumption with brain volume in the Framingham Study. Archives Neurol, 2008, 65: 1363–1367

    Article  Google Scholar 

  185. Erickson K I, Raji C A, Lopez O L, et al. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology, 2010, 75: 1415–1422

    Article  Google Scholar 

  186. Good C D, Johnsrude I S, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 2001, 14: 21–36

    Article  Google Scholar 

  187. Guerri C, Pascual M. Role of toll-like receptor 4 in alcohol-induced neuroinflammation and behavioral dysfunctions. In: Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Boston: Springer, 2013. 279–306

    Chapter  Google Scholar 

  188. Lehnardt S, Massillon L, Follett P, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA, 2003, 100: 8514–8519

    Article  Google Scholar 

  189. Hagerty S L, Bidwell L C, Harlaar N, et al. An exploratory association study of alcohol use disorder and DNA methylation. Alcohol Clin Exp Res, 2016, 40: 1633–1640

    Article  Google Scholar 

  190. Karoly H C, Thayer R E, Hagerty S L, et al. TLR4 methylation moderates the relationship between alcohol use severity and gray matter loss. J Stud Alcohol Drugs, 2017, 78: 696–705

    Article  Google Scholar 

  191. Thayer R E, Hagerty S L, Sabbineni A, et al. Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry. Hum Brain Mapp, 2016, 37: 2276–2292

    Article  Google Scholar 

  192. Fede S J, Grodin E N, Dean S F, et al. Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users. Neuroimage Clin, 2019, 22: 101782

    Article  Google Scholar 

  193. Shokri-Kojori E, Tomasi D, Alipanahi B, et al. Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nat Commun, 2019, 10: 690

    Article  Google Scholar 

  194. Wang Y, Zhao Y, Nie H, et al. Disrupted brain network efficiency and decreased functional connectivity in multi-sensory modality regions in male patients with alcohol use disorder. Front Hum Neurosci, 2018, 12: 513

    Article  Google Scholar 

  195. Schacht J P, Anton R F, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addiction Biol, 2013, 18: 121–133

    Article  Google Scholar 

  196. Agrawal R G, Hewetson A, George C M, et al. Minocycline reduces ethanol drinking. Brain Behavior Immunity, 2011, 25: 165–169

    Article  Google Scholar 

  197. George F R. The role of arachidonic acid metabolites in mediating ethanol self-administration and intoxication. Ann New York Acad Sci, 1989, 559: 382–391

    Article  Google Scholar 

  198. Pascual M, Blanco A M, Cauli O, et al. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci, 2007, 25: 541–550

    Article  Google Scholar 

  199. Bell R L, Lopez M F, Cui C, et al. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addiction Biol, 2015, 20: 38–42

    Article  Google Scholar 

  200. Franklin K M, Hauser S R, Lasek A W, et al. Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology, 2015, 232: 2251–2262

    Article  Google Scholar 

  201. Wen R T, Zhang M, Qin W J, et al. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol Clin Exp Res, 2012, 36: 2157–2167

    Article  Google Scholar 

  202. Ray L A, Bujarski S, Shoptaw S, et al. Development of the neuroimmune modulator ibudilast for the treatment of alcoholism: a randomized, placebo-controlled, human laboratory trial. Neuropsychopharmacol, 2017, 42: 1776–1788

    Article  Google Scholar 

  203. Montesinos J, Gil A, Guerri C. Nalmefene prevents alcohol-induced neuroinflammation and alcohol drinking preference in adolescent female mice: role of TLR4. Alcohol Clin Exp Res, 2017, 41: 1257–1270

    Article  Google Scholar 

  204. Sinclair J D. Drugs to decrease alcohol drinking. Ann Med, 1990, 22: 357–362

    Article  Google Scholar 

  205. Castera P, Stewart E, Grosskopf J, et al. Nalmefene, given as needed, in the routine treatment of patients with alcohol dependence: an interventional, open-label study in primary care. Eur Addict Res, 2019, 24: 293–303

    Article  Google Scholar 

  206. Hendershot C S, Wardell J D, Samokhvalov A V, et al. Effects of naltrexone on alcohol self-administration and craving: meta-analysis of human laboratory studies. Addiction Biol, 2017, 22: 1515–1527

    Article  Google Scholar 

  207. Ray L A, Chin P F, Miotto K. Naltrexone for the treatment of alcoholism: clinical findings, mechanisms of action, and pharmacogenetics. CNS Neurol Disorders-Drug Targets, 2010, 9: 13–22

    Article  Google Scholar 

  208. Ramanoël S, Hoyau E, Kauffmann L, et al. Gray matter volume and cognitive performance during normal aging: a voxel-based morphometry study. Front Aging Neurosci, 2018, 10: 235

    Article  Google Scholar 

  209. Tisserand D J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cerebral Cortex, 2004, 14: 966–973

    Article  Google Scholar 

  210. Magill M, Ray L A. Cognitive-behavioral treatment with adult alcohol and illicit drug users: a meta-analysis of randomized controlled trials. J Stud Alcohol Drugs, 2009, 70: 516–527

    Article  Google Scholar 

  211. Lopresti A L. Cognitive behaviour therapy and inflammation: a systematic review of its relationship and the potential implications for the treatment of depression. Aust New Zealand J Psychiatry, 2017, 51: 565–582

    Article  Google Scholar 

  212. Gryczynski J, Schwartz R P, Fishman M J, et al. Integration of transcendental meditation(r) (TM) into alcohol use disorder (AUD) treatment. J Substance Abuse Treatment, 2018, 87: 23–30

    Article  Google Scholar 

  213. Creswell J D, Irwin M R, Burklund L J, et al. Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. Brain Behav Immun, 2012, 26: 1095–1101

    Article  Google Scholar 

  214. Creswell J D, Taren A A, Lindsay E K, et al. Alterations in resting-state functional connectivity link mindfulness meditation with reduced interleukin-6: a randomized controlled trial. Biol Psychiatry, 2016, 80: 53–61

    Article  Google Scholar 

  215. Malarkey W B, Jarjoura D, Klatt M. Workplace based mindfulness practice and inflammation: a randomized trial. Brain Behav Immun, 2013, 27: 145–154

    Article  Google Scholar 

  216. Seo D Y, Heo J W, Ko J R, et al. Exercise and neuroinflammation in health and disease. Int Neurourol J, 2019, 23: S82–92

    Article  Google Scholar 

  217. Hallgren M, Vancampfort D, Giesen E S, et al. Exercise as treatment for alcohol use disorders: systematic review and meta-analysis. Br J Sports Med, 2017, 51: 1058–1064

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute on Alcohol Abuse and Alcoholism (Grant No. Y1AA-3009). We thank Yang HU for his valuable support in text formatting and reference management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene-Jack Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, D.E., McPherson, K.L., Biesecker, C.L. et al. Neuroimaging of inflammation in alcohol use disorder: a review. Sci. China Inf. Sci. 63, 170102 (2020). https://doi.org/10.1007/s11432-019-2857-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2857-5

Keywords

Navigation