Visible and infrared image fusion using ℓ0-generalized total variation model | Science China Information Sciences Skip to main content
Log in

Visible and infrared image fusion using ℓ0-generalized total variation model

  • Letter
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Yun X, Jing Z L, Xiao G, et al. A compressive tracking based on time-space Kalman fusion model. Sci China Inf Sci, 2016, 59: 012106

    Article  Google Scholar 

  2. Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recogn Lett, 1989, 9: 245–253

    Article  MATH  Google Scholar 

  3. Da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process, 2006, 15: 3089–3101

    Article  Google Scholar 

  4. Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform. Inf Fusion, 2007, 8: 143–156

    Article  Google Scholar 

  5. Ma J Y, Chen C, Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf Fusion, 2016, 31: 100–109

    Article  Google Scholar 

  6. Jie Y, Lu W S. Compressive imaging by generalized total variation minimization. In: Proceedings of 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, 2014. 21–24

    Google Scholar 

  7. Feng M B, Mitchell J E, Pang J S, et al. Complementarity formulations of l0 norm optimization problems. 2013. http://www.optimization-online.org/DB FILE/2013/09/4053.pdf

    Google Scholar 

  8. Yuan G Z, Ghanem B. A proximal alternating direction method for semi-definite rank minimization. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, 2016. 2300–2308

    Google Scholar 

  9. Xydeas C S, Petrovic V. Objective image fusion performance measure. Electron Lett, 2000, 36: 308–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Pan or Zhongliang Jing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Jing, Z., Qiao, L. et al. Visible and infrared image fusion using ℓ0-generalized total variation model. Sci. China Inf. Sci. 61, 049103 (2018). https://doi.org/10.1007/s11432-017-9246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9246-3

Navigation