Abstract
In this paper, a Q-band CMOS low noise amplifier (LNA) exploiting transformer positive-negative feedback and noise cancelling is presented. The proposed low noise amplifier consists of a positive transformer feedback to achieve noise-reduction and a negative transformer feedback to obtain high reverse isolation and stability. The noise cancellation technique is applied in this LNA to achieve a low noise figure. This LNA has been fabricated by standard commercial 90 nm CMOS. According to measurements, this proposed LNA achieves a peak gain of 11.5 dB, a noise figure of 6.5 dB and an input P1dB of −12 dBm. It consumes 11.5 mA from a 1.2 V supply occupying the area of 0.6×0.7 mm2.
Similar content being viewed by others
References
Razavi B. A 60-GHz direct-conversion CMOS receiver. In: Proceeding of IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech Papers, San Francisco, 2005. 400–401
Tsai J H, Chen W C, Wang T P, et al. A miniature Q-band low noise amplifier using 0.13 μm CMOS technology. IEEE Microw. Wireless Compin. Lett, 2006, 16: 327–329
Varonnen M, Karkkainen M, Kantanen M, et al. Millimeter-wave integrated circuits in 65-nm CMOS. IEEE J Solid-State Circuit, 2008, 43: 1991–2002
Vitzilaios G, Papananos Y, Theodoratos G. A 1-V 5-GHz CMOS multiple magnetic feedback receiver front-end. IEEE Trans Microw Theory Tech, 2008, 56: 1338–1348
Masud M A, Zirath H, Ferndahl M, et al. 90 nm CMOS MMIC amplifier. In: Proceeding of IEEE RFIC Symp. Dig, Phoenix, 2004. 201–204
Doan C H, Emami S, Niknejad A M, et al. Millimeter-wave CMOS design. IEEE J Solid-State Circuit, 2005, 40: 144–155
Shigematsu H, Hirose T, Brewer F, et al. Millimeter-wave CMOS circuit design. IEEE Trans Microw Theory Tech, 2005, 52: 472–477
Razavi B. Design of millimeter-wave CMOS radios: A tutorial. IEEE Trans Circuit Syst I, 2009, 56: 4–16
Kang K, Lin F, Pham D D, et al. A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS. IEEE J Solid-State Circuit, 2010, 45: 1720–1731
Li C H, Kuo C N, Kuo M C. A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18 μm CMOS. IEEE Trans Microw Theory Tech, 2012, 60: 3502–3511
Okada K, Matsushita K, Bunsen K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct conversion transceiver for IEEE 802.15.3c. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011. 160–162
Kan L L L, Lau D M C, Lou S, et al. A 1-V 86-mW-RX 53-mW-TX single-chip CMOS transceiver for WLAN IEEE 802.11a. IEEE J Solid-State Circuit, 2007, 42: 1986–1998
Zhang X, Pei W H, Huang B J, et al. A low-noise fully-differential CMOS preamplifier for neural recording applications. Sci China Infor Sci, 2012, 55: 441–452
Chen Y M, Zhu L, Zhang L, et al. Four-channel, 40 Gb/s front-end amplifier for parallel optical receiver in 0.18 μm CMOS. Sci China Infor Sci, 2013, 56: 042402(1)–042402(7)
Li X Y, Shekhar S, Allstot D J. Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS. IEEE J Solid-State Circuit, 2005, 40: 2609–2619
Zhuo W, Shekhar X L S, Embabi S H K, et al. A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans Circuit Syst II, 2005, 52: 875–879
Bruccoleri F, Klumperink E A M, Nauta B. Wide-band CMOS low noise amplifer exploiting thermal noise canceling. IEEE J Solid-State Circuit, 2004, 39: 275–281
Bruccoleri F, Klumperink E A M, Nauta B. Noise cancelling in wideband CMOS LNAs. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2002. 406–407
Chen W H, Liu G, Zdravko B, et al. A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid-State Circuit, 2008, 43: 1164–1176
Wang H, Zhang L, Yu Z. A wideband inductorless LNA with local feedback and noise cancelling for low-power lowvoltage applications. IEEE Trans Circuit Syst I, 2010, 57: 1993–2005
Liao C F, L S. A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers. IEEE J Solid-State Circuit, 2007, 42: 329–339
Sobhy E A, Helmy A A, Hoyos S, et al. A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback. IEEE Trans Microw Theory Tech, 2005, 59: 3154–3161
Cassan D J, Long J R. A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS. IEEE J Solid-State Circuit, 2003, 38: 427–435
Sakian P, Janssen E, Roermund A H M, et al. Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA. IEEE Trans Microw Theory Tech, 2012, 60: 702–713
Long J R. Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circuit, 2000, 35: 1368–1382
Woo S, Kim W, Kim C L H, et al. A wideband low-power CMOS LNA with positive-negative feedback for noise, gain and linearity optimization. IEEE Trans Microw Theory Tech, 2012, 60: 3169–3178
Shigematsu H, Hirose T, Brewer F, et al. Millimeter-wave CMOS circuit design. IEEE Trans Microw Theory Tech, 2005, 52: 472–477
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, J., Jiang, Z., Yi, K. et al. A Q-band CMOS LNA exploiting transformer feedback and noise-cancelling. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-014-5249-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-014-5249-7