Novel way to research nonlinear feedback shift register | Science China Information Sciences Skip to main content
Log in

Novel way to research nonlinear feedback shift register

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we regard the nonlinear feedback shift register (NLFSR) as a special Boolean network, and use semi-tensor product of matrices and matrix expression of logic to convert the dynamic equations of NLFSR into an equivalent algebraic equation. Based on them, we propose some novel and generalized techniques to study NLFSR. First, a general method is presented to solve an open problem of how to obtain the properties (the number of fixed points and the cycles with different lengths) of the state sequences produced by a given NLFSR, i.e., the analysis of a given NLFSR. We then show how to construct all \(2^{2^n - (l - n)} /2^{2^n - l}\) shortest n-stage feedback shift registers (nFSR) and at least \(2^{2^n - (l - n) - 1} /2^{2^n - l - 1}\) shortest n-stage nonlinear feedback shift registers (nNLFSR) which can output a given nonperiodic/periodic sequence with length l. Besides, we propose two novel cycles joining algorithms for the construction of full-length nNLFSR. Finally, two algorithms are presented to construct \(2^{2^{n - 2} - 1}\) different full-length nNLFSRs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golomb S W, Welch L R, Goldstein R M, et al. Shift Register Sequences. Laguna Hills: Aegean Park Press, 1982

    Google Scholar 

  2. Hellebrand S, Rajski J, Tarnick S, et al. Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers. IEEE Trans Comput, 1995, 44: 223–233

    Article  MATH  Google Scholar 

  3. Paar C, Fleischmann P, Soria-Rodriguez P. Fast arithmetic for public-key algorithms in Galois fields with composite exponents. IEEE Trans Comput, 1999, 48: 1025–1034

    Article  MathSciNet  Google Scholar 

  4. Moon T K, Veeramachaneni S. Linear feedback shift registers as vector quantisation codebooks. Electron Lett, 1999, 35: 1919–1920

    Article  Google Scholar 

  5. Deepthi P P, Sathidevi P S. Design, implementation and analysis of hardware efficient stream ciphers using LFSR based hash functions. Comput Secur, 2009, 28: 229–241

    Article  Google Scholar 

  6. Khashandarag A S, Navin A H, Mirnia M K, et al. An optimized color image steganography using LFSR and DFT techniques. In: Lin S, Huang X, eds. Advanced Research on Computer Education, Simulation and Modeling. Berlin/Heidelberg: Springer, 2011. 247–253

    Chapter  Google Scholar 

  7. Choy J, Chew G, Khoo K, et al. Cryptographic properties and application of a generalized unbalanced Feistel network structure. Cryptogr Commun, 2011, 3: 141–164

    Article  MATH  MathSciNet  Google Scholar 

  8. Gebotys C H. Security in Embedded Devices. Springer US, 2010. 111–142

    Book  MATH  Google Scholar 

  9. Klein A. Attacks on the RC4 stream cipher. Designs Codes Cryptogr, 2008, 48: 269–286

    Article  MATH  Google Scholar 

  10. Zhang B, Feng D G. Improved multi-pass fast correlation attacks with applications. Sci China Inf Sci, 2011, 54: 1635–1644

    Article  MATH  MathSciNet  Google Scholar 

  11. Golic J D. On the linear complexity of functions of periodic GF(q) sequences. IEEE Trans Inf Theory, 1989, 35: 69–75

    Article  MATH  MathSciNet  Google Scholar 

  12. De Bruijn N G, Erdos P. A combinatorial problem. Indag Math, 10, 1948: 421–423

    Google Scholar 

  13. Wan Z X, Dai Z D, Liu M L, et al. Nonlinear Feedback Shift Register. Beijing: Science Press, 1978

    Google Scholar 

  14. Rizomiliotis P, Kalouptsidis N. Results on the nonlinear span of binary sequences. IEEE Trans Inf Theory, 2005, 51: 1555–1563

    Article  MathSciNet  Google Scholar 

  15. Rizomiliotis P, Kolokotronis N, Kalouptsidis N. On the quadratic span of binary sequences. IEEE Trans Inf Theory, 2005, 51: 1840–1848

    Article  MathSciNet  Google Scholar 

  16. Limniotis K, Kolokotronis N, Kalouptsidis N. On the nonlinear complexity and LempelCZiv complexity of finite length sequences. IEEE Trans Inf Theory, 2007, 53: 4293–4302

    Article  MathSciNet  Google Scholar 

  17. Jansen C J A, Franx W G, Boekee D E. An efficient algorithm for the generation of DeBruijn cycles. IEEE Trans Inf Theory, 1991, 37: 1475–1478

    Article  MATH  MathSciNet  Google Scholar 

  18. Annexstein F S. Generating de Bruijn sequences: an efficient implementation. IEEE Trans Comput, 1997, 46: 198–200

    Article  Google Scholar 

  19. Cheng D, Dong Y. Semi-tensor product of matrices and its some applications to physics. Meth Appl Anal, 2003, 10: 565–588

    MATH  MathSciNet  Google Scholar 

  20. Cheng D, Qi H. A linear representation of dynamics of Boolean networks. IEEE Trans Automat Contr, 2010, 55: 2251–2258

    Article  MathSciNet  Google Scholar 

  21. Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: a Semi-Tensor Product Approach. London: Springer, 2011

    Book  Google Scholar 

  22. Cheng D, Qi H, Li Z. Model construction of Boolean network via observed data. IEEE Trans Neural Netw, 2011, 22: 525–536

    Google Scholar 

  23. Cheng D. Disturbance decoupling of Boolean control networks. IEEE Trans Automat Contr, 2011, 56: 2–10

    Article  Google Scholar 

  24. Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

    Article  MATH  MathSciNet  Google Scholar 

  25. Cheng D, Li Z, Qi H. Realization of Boolean control networks. Automatica, 2010, 46: 62–69

    Article  MATH  MathSciNet  Google Scholar 

  26. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J theor biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  27. Blumer A, Blumer J, Ehrenfeucht A, et al. Linear size finite automata for the set of all subwords of a word-an outline of results. Bull EATCS, 1983, 21: 12–20

    Google Scholar 

  28. Jansen C J A, Boekee D E. The shortest feedback shift register that can generate a given sequence. In: Proceedings of Advances in Cryptology. New York: Springer, 1990. 90–99

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiPeng Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Peng, H., Li, L. et al. Novel way to research nonlinear feedback shift register. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-013-5058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5058-4

Keywords

Navigation