A DHT-based fast handover management scheme for mobile identifier/locator separation networks | Science China Information Sciences Skip to main content
Log in

A DHT-based fast handover management scheme for mobile identifier/locator separation networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Several researches propose the identifier/locator separation architecture to tackle the scaling problems of today’s Internet routing and addressing system. And scalable and seamless mobility support is an important task in mobile identifier/locator separation networks. In this paper, by analyzing the features, such as direct separation, flexible mapping and identifier replacement, we show that the new architecture delivers data packets more efficiently and protects location privacy better than traditional mobile IP networks, and is able to implement soft handover conveniently. Then we present a distributed Hash table (DHT) based fast handover management (DFHM) scheme for the new architecture, which improves the reactive handover mode of FMIPv6 and eliminates the duplicate address detection (DAD) and return routability (RR) processes in MIPv6. And we propose a generic analysis framework for handover management. Further, we demonstrate the validity of our framework by simulation and quantificationally study the effects of network scale and movement velocity. The results show that DFHM has good scalability and low handover latency, and has great advantages in the signaling cost and fast mobility support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan H, Lakshminarayanan K, Ratnasamy S, et al. A layered naming architecture for the Internet. In: Proc of ACM SIGCOMM, 2004. 343–352

    Google Scholar 

  2. Francis P, Gummadi R. IPNL: a NAT-extended Internet architecture. In: Proc of ACM SIGCOMM, 2001. 69–80

    Google Scholar 

  3. Massey D, Wang L, Zhang B, et al. A scalable routing system design for future Internet. In: Proc of IPv6, 2007

    Google Scholar 

  4. Zhang B, Kambhampati V, Massey D, et al. A secure and scalable Internet routing architecture (SIRA). Technical Report TR06-01. Arizona: University of Arizona, 2006

    Google Scholar 

  5. Huber J F. Mobile next-generation networks. IEEE Multimed, 2004, 11: 72–83

    Article  Google Scholar 

  6. Akyildiz I F, Xie J, Mohanty S. A ubiquitous mobile communication architecture for next-generation heterogenous wireless systems. IEEE Radio Commun, 2005, 43: 29–36

    Article  Google Scholar 

  7. Meyer D, Zhang L, Fall K. Report from the IAB workshop on routing and addressing. IETF RFC 4984, 2007

    Google Scholar 

  8. Moskowitz R, Nikander P. Host identity protocol (HIP) architecture. IETF RFC 4423, 2006

    Google Scholar 

  9. Moskowitz R, Nikander P, Jokela P, et al. Host identity protocol. IETF RFC 5201, 2008

    Google Scholar 

  10. Farinacci D, Fuller V, Oran D, et al. Locator/ID separation protocol (LISP). IETF Internet Draft, draft-farinacci-lisp-07.txt, 2008

    Google Scholar 

  11. Makaya C, Pierre S. An architecture for seamless mobility support in IP-based next-generation wireless networks. IEEE Trans Veh Technol, 2008, 57: 1209–1225

    Article  Google Scholar 

  12. Kafle V P, Inoue M. Locator ID separation for mobility management in the new generation network. J Wirel Mobile Netw Ubiquit Comput Depend Appl, 2010, 1: 3–15

    Google Scholar 

  13. Qiu F, Li X Q, Zhang H K. Mobility management in identifier/locator split networks. Wirel Pers Commun, 2012, 65: 489–514

    Article  Google Scholar 

  14. Pan J, Paul S, Jain R, et al. Milsa: A mobility and multihoming supporting identifier locator split architecture for naming in the next generation internet. In: Proc of IEEE GLOBECOM, 2008. 1–6

    Google Scholar 

  15. Perkins C. IP mobility support for IPv4. IETF RFC 3344, 2002

    Google Scholar 

  16. Johnson D, Perkins C, Arkko J. Mobility support in IPv6. IETF RFC 3775, 2004

    Google Scholar 

  17. Koodli R. Fast handovers for mobile IPv6. IETF RFC 4068, 2005

    Google Scholar 

  18. Mao Y, Knutsson B, Lu H, et al. DHARMA: Distributed home agent for robust mobile access. In: Proc of IEEE INFOCOM, 2005

    Google Scholar 

  19. Guo C, Wu H, Tan K, et al. End-system-based mobility support in IPv6. IEEE J Sel Area Commun, 2005, 23: 2104–2117

    Article  Google Scholar 

  20. Le H, Hoang D, Simonds A, et al. An efficient mechanism for mobility support using peer-to-peer overlay networks. In: Proc of IEEE INDIN, 2005. 325–330

    Google Scholar 

  21. Lo S, Chen W. Peer-to-Peer based architecture for mobility management in wireless networks. In: Proc of IFIP/IEEE MWCN, 2005

    Google Scholar 

  22. Pack S, Park K, Kwon T, et al. SAMP: scalable application-layer mobility protocol. IEEE Commun Mag, 2006, 44: 86–92

    Article  Google Scholar 

  23. Farha R, Khavari K, Abji N, et al. Peer-to-Peer mobility management for all-IP networks. In: Proc of IEEE ICC, 2006. 1946–1952

    Google Scholar 

  24. Farha R, Khavari K, Alberto L, et al. Peer-to-Peer vertical mobility management. In: Proc of IEEE ICC, 2007. 1846–1853

    Google Scholar 

  25. Fischer M, Andersen F, Kopsel A, et al. A distributed IP mobility approach for 3G SAE. In: Proc of IEEE PIMRC, 2008. 1–6

    Google Scholar 

  26. Wen J L, Ju W S, Tian H, et al. Robust and scalable mobility support for real-time applications. In: Proc of IEEE WCNC, 2008. 3219–3224

    Google Scholar 

  27. Zhai Y J, Wang Y, Yuan J, et al. A performance analysis model for DHT-based mobility management schemes (in Chinese). J Tsinghua Univ (Science and Technology), 2011, 51: 115–121

    Google Scholar 

  28. Perez-Costa X, Torrent-Moreno M, Hartenstein H. A performance comparison of mobile IPv6, hierarchical mobile IPv6, fast handovers for mobile IPv6 and their combination. ACM SIGMOBILE Mobile Comput Commun Rev, 2003, 7: 5–19

    Article  Google Scholar 

  29. Gwon Y, Kempf J, Yegin A. Scalability and robustness analysis of mobile IPv6, hierarchical mobile IPv6, and hybrid IPv6 mobility protocols using a large-scale simulation. In: Proc of IEEE ICC, 2004. 4087–4091

    Google Scholar 

  30. Makaya C, Pierre S. An analytical framework for performance evaluation of IPv6-based mobility management protocols. IEEE Trans Wirel Commun, 2008, 7: 972–983

    Article  Google Scholar 

  31. Manner J, Kojo M. Mobility related terminology. IETF RFC 3753, 2004

    Google Scholar 

  32. Akyildiz I F, Xie J, Mohanty S. A survey of mobility management in next-generation all-IP-based wireless systems. IEEE Wirel Commun, 2004, 11: 16–28

    Article  Google Scholar 

  33. Soliman H, Castelluccia C, EI Malki K, et al. Hierarchical mobile IPv6 mobility management (HMIPv6). IETF RFC 4140, 2005

    Google Scholar 

  34. Zhai Y J, Wang Y, You I, et al. A DHT and MDP-based mobility management scheme for large-scale mobile Internet. In: Proc of IEEE INFOCOM Workshops on MobiWorld, 2011. 1–6

    Google Scholar 

  35. Zhai Y J, Wang Y, Yuan J, et al. Analysis of optimal query, fairness and replication for MDP-based mobility management. In: Proc of IMIS Workshops on MoMoPE, 2011. 1–8

    Google Scholar 

  36. Zhai Y J, Wang Y, Yuan J, et al. Hierarchical DHT and proportional replication based mobility management for large-scale mobile Internet. Math Comput Model, 2012, doi:10.10.16/j.mcm.2011.12.038

    Google Scholar 

  37. Feldmann A, Cittadini L, Mühlbauer, et al. Hair: Hierarchical architecture for Internet routing. In: Proc of ACM Re-architecting the Internet, 2009. 43–48

    Google Scholar 

  38. Hanka O, Kunzmann G, Spleiss C, et al. HiiMap: Hierarchical internet mapping architecture. In: Proc of Future Information Networks, 2009. 17–24

    Google Scholar 

  39. Jakab L, Cabellos-Aparicio A, Coras F, et al. LISP-TREE: a DNS hierarchy to support the lisp mapping system. IEEE J Sel Area Commun, 2010, 28: 1332–1343

    Article  Google Scholar 

  40. Mathy L, Iannone L. LISP-DHT: Towards a DHT to map identifiers onto locators. In: Proc of ACM CoNEXT Conference, 2008

    Google Scholar 

  41. Liu S, Bi J, Wang Y. A DHT-based mapping system for identifier and locator separation network. In: Proc of IEEE Advances in Future Internet, 2009. 73–76

    Google Scholar 

  42. Luo H B, Qin Y, Zhang H. A DHT-based identifier-to-locator mapping approach for a scalable Internet. IEEE Trans Parall Distr Syst, 2009, 20: 1790–1802

    Article  Google Scholar 

  43. Stoica I, Morris R, Karger D, et al. Chord: A scalable peer-to-peer lookup service for Internet applications. In: Proc of ACM SIGCOMM, 2001. 27–31

    Google Scholar 

  44. Zhai Y J, Wang Y, Yuan J, et al. An index structure framework to analyze host mobility support for integrated networks. J Netw, 2009, 4: 53–64

    Google Scholar 

  45. Baumann F V, Niemegeers I G. An evaluation of location management procedures. In: Proc of 3rd Annual Int Conf Universal Personal Commun, 1994. 359–364

    Google Scholar 

  46. Xiao Y, Pan Y, Lie J. Design and analysis of location management for 3G cellular networks. IEEE Trans Parall Distr, 2004: 339-349

  47. Fang Y, Chlamtac I, Lin Y. Portable movement modeling for PCS networks. IEEE Trans Veh Technol, 2000, 49: 1356–1363

    Article  Google Scholar 

  48. Balachandran A, Voelker G, Bahl P, et al. Characterizing user behavior and network performance in a public wireless LAN. ACM SIGMETRICS Perform, 2000, 30: 195–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuJia Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Y., Mao, X., Wang, Y. et al. A DHT-based fast handover management scheme for mobile identifier/locator separation networks. Sci. China Inf. Sci. 56, 1–15 (2013). https://doi.org/10.1007/s11432-012-4662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4662-z

Keywords

Navigation