Studies and advances on joint source-channel encoding/decoding techniques in flow media communications | Science China Information Sciences Skip to main content
Log in

Studies and advances on joint source-channel encoding/decoding techniques in flow media communications

  • Review
  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Joint source-channel coding/decoding (JSCC/JSCD) techniques in flow media communications have become a state-of-the-art and one of the challenging research subjects in the spatial communication area. They have great application prospective and deep impact in various manned space flights, satellite missions, mobile radio communications and deep-space explorations. In the last few years, there have been influential achievements in JSCC/JSCD studies. This paper aims at an introduction to the basic principles of joint source-channel optimal design. A general summarization and classification for various existing JSCC/JSCD methods is addressed. Also presented is a JSCD scheme based on variable-length coding, capable of providing reliable resolutions for flow media data transmission in spatial communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon C E. A mathematical theory of communication. Bell Syst Tech J, 1948, 27: 379–423; 623–656

    MATH  MathSciNet  Google Scholar 

  2. Vembu S, Verdu S, Steinberg Y. The source-channel separation theorem revisited. IEEE Trans Inf Theory, 1995, 41: 44–54

    Article  MATH  MathSciNet  Google Scholar 

  3. Hagenauer J. Information and coding theory for mobile communications. In: Diderot Mathematical Forum 2001, Eindhoven, Helsinki, Lausanne, 2001

  4. Hangenauer J. Source controlled channel decoding. IEEE Trans Commun, 1995, 43: 2449–2457

    Article  Google Scholar 

  5. Xiang W. Joint source-channel coding for image transmission and related topics. Ph.D. thesis, University of South Australia, Adelaide, 2003, 12

    Google Scholar 

  6. Liu J, Tu G, Wu W. New iterative super-trellis decoding with source a priori information for VLCs with turbo codes (in Chinese). J Electr, 2007, 24: 122–127

    MATH  Google Scholar 

  7. Liu J, Tu G, Zhang C, et al. Joint source and channel decoding for variable length encoded turbo codes. Eurasip J Adv Signal Process, 2008, (1): 7

  8. Hochwald B, Zeger K. Tradeoff between source and channel coding. IEEE Trans Inf Theory, 1997, 43: 1412–1424

    Article  MATH  MathSciNet  Google Scholar 

  9. Hochwald B. Tradeoff between source and channel coding on a Gaussian channel. IEEE Trans Inf Theory, 1998, 44: 3044–3055

    Article  MATH  Google Scholar 

  10. Peng Z, Huang Y F, Costello D J, et al. On the tradeoff between source and channel code rates for image transmission. In: Proc IEEE Int Conf Image Processing. Chicago, IL, 1998. 118–121

  11. Berrou C, Glavieux A. Near optimal error correcting coding and decoding: turbo codes. IEEE Trans Commun, 1996, 44: 1261–1271

    Article  Google Scholar 

  12. Ruf M J, Modestino J W. Operational rate-distortion performance for joint source and channel coding of images. IEEE Trans Image Process, 1999, 8: 305–320

    Article  Google Scholar 

  13. Hagenauer J. Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Trans Commun, 1988, 36: 389–400

    Article  Google Scholar 

  14. Bystrom M, Modestino J W. Combined source-channel coding schemes for video transmission over an additive white Gaussian noise channel. IEEE J Select Areas Commun, 2000, 18: 880–890

    Article  Google Scholar 

  15. Su Y, Lu J, Wang J. A novel algorithm on joint optimization of source coding, channel coding and error concealment for video transmission. Acta Electr Sin, 2001, (1): 1803–1806

    Google Scholar 

  16. Yu C, Lu J, Zheng J. Research on rate control technology in video communications. Measur Control Tech, 2005, 24: 6–13

    Google Scholar 

  17. Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circ Syst Video Tech, 1996, 6: 243–250

    Article  Google Scholar 

  18. Christopoulos C, Skodras A, Ebrahimi T. The JPEG 2000 still image coding system: an overview. IEEE Trans Consum Electr, 2000, 46: 1102–1127

    Google Scholar 

  19. CCSDS 122.0-R-2. Image Data Compression. Draft Recommendation for Space Data System Standards, Red Book, Issue 2, 2005-07

  20. Sherwood P G, Zeger K. Progressive image coding for noisy channels. IEEE Signal Process Lett, 1997, 4: 189–191

    Article  Google Scholar 

  21. Gallant M, Kossentini F. Rate-distortion optimized layered coding with unequal errorprotection for robust Internet video. IEEE Trans Circ Syst Video Tech, 2001, 11: 357–372

    Article  Google Scholar 

  22. Nosratinia A, Lu J, Aazhang B. Source-channel rate allocation for progressive transmission of images. IEEE Trans Commun, 2003, 51: 186–196

    Article  Google Scholar 

  23. Xiao S, Wu C. Joint source channel coding of progressive image over wireless channel. J Electr Inf Tech, 2002, 24: 1835–1841

    Google Scholar 

  24. Xiao S, Zhang F, Wu C. A new method of joint source channel coding based on SPIHT. Chinese J Comput, 2003, 26: 281–286

    Google Scholar 

  25. Huo L, Gao W, Huang Q, et al. Error protection algorithms for scalable multimedia transmission: A survey. J Comput Res Develop, 2005, 42: 1954–1961

    Article  Google Scholar 

  26. Appadwedula S, Jones D L, Ramchandran K, et al. Joint source-channel matching for a wireless communication link. In: Proc IEEE Int Conf Commun, Atlanta, GA, 1998. 482–486

  27. Chande V, Farvardin N. Joint source-channel coding for progressive transmission of embedded source coders. In: Proc IEEE Data Compression Conf, Snowbird, UT, 1999. 52–61

  28. Stanković V, Hamzaoui R, Saupe D. Fast algorithm for rate-based optimal error protection of embedded codes. IEEE Trans Commun, 2003, 51: 1788–1795

    Article  Google Scholar 

  29. Nosratinia A, Lu J, Aazhang B. Source-channel rate allocation for progressive transmission of images. IEEE Trans Commun, 2003, 51: 186–196

    Article  Google Scholar 

  30. Banister B A, Belzer B, Fischer T R. Robust image transmission using JPEG2000 and turbo-codes. IEEE Signal Process Lett, 2002, 9: 117–119

    Article  Google Scholar 

  31. Rowitch D N, Milstein L B. Rate compatible punctured turbo (RCPT) codes in a hybrid FEC/ARQ systems. In: Proc IEEE Global Commun Conf, Phoenix, AZ, 1997. 55–59

  32. Xu W, Guo L, Liu C. Turbo-codes used for progressive image based on SPIHT. J Univ Sci Tech China, 2002, 32: 202–209

    Google Scholar 

  33. Fang Z, Zhou Y, Zou D, et al. MP4 transmission using turbo codes with unequal error protection. J Shanghai Jiaotong Univ, 2004, 38: 542–546

    Google Scholar 

  34. Zhang J, Zhou T. Hybrid ARQ using turbo codes in deep space communication. J Nanjing Univ Sci Tech, 2006, 30: 733–738

    Google Scholar 

  35. Guo R, Liu J. Image encoding based on adaptive segmentation and irregular low-density parity check. J Zhejiang Univ (Eng Sci), 2007, 41: 1298–1302

    MATH  Google Scholar 

  36. Kozintsev I, Ramchandran K. Multiresolution joint source-channel coding using embedded constellations for powerconstrained time-varying channels. In: Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, Atlanta, GA, 1996. 2343–2346

  37. Zheng H, Liu J. The subband modulation: A joint power and rate allocation framework for subband image and video transmission. IEEE Trans Circ Syst Video Tech, 1999, 9: 823–838

    Article  Google Scholar 

  38. Kurtenbach A, Wintz P. Quantizing for noisy channels. IEEE Trans Commun Tech, 1969, COM-17: 291–302

    Article  Google Scholar 

  39. Farvardin N, Vaishampayan V. Optimal quantizer design for noisy channels: an approach to combined source-channel coding. IEEE Trans Inf Theory, 1987, IT-33: 827–838

    Article  MathSciNet  Google Scholar 

  40. Vaishampayan V, Farvardin N. Optimal block cosine transform image coding for noisy channels. IEEE Trans Commun, 1990, 38: 327–336

    Article  Google Scholar 

  41. Kumazawa H, Kasahara M, Namekawa T. A construction of vector quantizers for noisy channels. Electr Eng Japan, 1984, 67-B: 39–47

    MathSciNet  Google Scholar 

  42. Zeger K, Gersho A. Vector quantizer design for memoryless noisy channels. In: Proc IEEE Int Conf Commun, Philadelphia, PA, 1988. 1593–1597

  43. Farvardin N. A study of vector quantization for noisy channels. IEEE Trans Inf Theory, 1990, 36: 799–809

    Article  MathSciNet  Google Scholar 

  44. Farvardin N, Vaishampayan V. On the performance and complexity of channel-optimized vector quantizers. IEEE Trans Inf Theory, 1991, 37: 155–160

    Article  MATH  MathSciNet  Google Scholar 

  45. Kasner J H, Marcellin M W, Hunt B R. Universal trellis coded quantization. IEEE Trans Image Process, 1999, 8: 1677–1687

    Article  Google Scholar 

  46. Wang M, Fischer T R. Trellis-coded quantization designed for noisy channels. IEEE Trans Inf Theory, 1994, 40: 1792–1802

    Article  MATH  Google Scholar 

  47. Gao S, Tu G. Robust H.263+ video transmission using partial backward decodable bit stream (PBDBS). IEEE Trans Circ Syst Video Tech, 2003, 13: 182–187

    Article  Google Scholar 

  48. Gao S, Zhang C. Two-way decodable variable length data blocks for robust video transmission. In: Proc SPIE Conf Visual Communications and Image Processing, San Jose, California, USA, 2004. 1277–1285

  49. Takishima Y, Wada M, Murakami H. Reversible variable length codes. IEEE Trans Commun, 1995, 43: 158–162

    Article  MATH  Google Scholar 

  50. Wang X, Xie T, Lu J. Error correction performance analysis of error resilient arithmetic code. J Tsinghua Univ (Sci Tech), 2007, 12: 1661–1664

    Google Scholar 

  51. Ma S, Gao W. Excerpt of dissertation: Rate distortion optimization based video coding. J Graduate Univ CAS, 2007, 24: 137–143

    MathSciNet  Google Scholar 

  52. Sayood K, Borkenhagen J C. Use of residual redundancy in the design of joint source/channel codes. IEEE Trans Commun, 1991, 39: 838–846

    Article  Google Scholar 

  53. Alajaji F, Phamdo N, Fujia T. Channel codes that exploit the residual redundancy in CELP-encoded speech. IEEE Trans Speech Audio Process, 1996, 4: 325–336

    Article  Google Scholar 

  54. Ruf M J, Hagenauer J. Source-controlled channel decoding in image transmission. In: Proc Workshop Wireless Image/Video Communications, Loughborough, UK, 1996. 14–20

  55. Boudreau D, Dubuc C. APRI-SOVA-based source controlled channel decoding with the ITU-T G.729 speech coding standard. In: Proc 19th Biennial Symp Communications, Paris, France, 1998. 160–163

  56. Fingscheidt T, Hindelang T, Cox R V, et al. Joint source-channel (de-)coding for mobile communications. IEEE Trans Commun, 2002, 50: 200–212

    Article  Google Scholar 

  57. Bahl L R, Cocke J, Jelink F, et al. Optimal decoding of linear codes for minimizing symbol error ratio. IEEE Trans Inf Theory, 1974, 20: 284–287

    Article  MATH  Google Scholar 

  58. Zhu G C, Alajaji F. Turbo codes for nonuniform memoryless sources over noisy channels. IEEE Commun Lett, 2002, 6: 64–66

    Article  Google Scholar 

  59. Ruscitto A, Biglieri E M. Joint source and channel coding using turbo codes over rings. IEEE Trans Commun, 1998, 46: 981–984

    Article  MATH  Google Scholar 

  60. Peng Z, Huang Y F, Costello D J, et al. Turbo codes for image transmission-a joint channel and source decoding approach. IEEE J Select Areas Commun, 2000, 18: 868–879

    Article  Google Scholar 

  61. Lü J, Yuan D, Sun M. Joint source channel decoding for compressed subband coded image transmission over wireless communication. J Shandong Univ (Eng Sci), 2005, 35: 68–72

    Google Scholar 

  62. Yin W, Wu Y. Joint source-channel iterative decoding based on hidden Markov model. J Commun, 2006, 27: 61–72

    Google Scholar 

  63. Murad A H, Fuja T E. Joint source-channel decoding of variable-length encoded sources. In: Proc ITW’98, Killarney, 1998. 94–95

  64. Demir N, Sayood K. Joint source/channel coding for variable length codes. In: Proc DCC, Snowbird, UT, 1998. 139–148

  65. Park M, Miller D J. Joint source-channel decoding for variable-length encoded data by exact and approximate MAP sequence estimation. IEEE Trans Commun, 2000, 48: 2449–2457

    Google Scholar 

  66. Lavovic K, Villasenor J, Wesel R. Robust joint Huffman and convolutional decoding. In: Proc. IEEE VTC’99, Amsterdam, 1999. 2551–2555

  67. Subbalakshimi K P, Vaisey J. On the joint source-channel decoding of variable-length encoded source: the BSC case. IEEE Trans Commun, 2001, 49: 2052–2055

    Article  Google Scholar 

  68. Bauer R, Hagenauer J. On variable length codes for iterative source/channel decoding. In: Proc DCC, Snowbird, UT, 2001. 273–282

  69. Thobaben R, Kliewer J. Low-complexity iterative joint source-channel decoding for variable-length encoded Markov sources. IEEE Trans Commun, 2005, 53: 2054–2064

    Article  Google Scholar 

  70. Lavovic K, Villasenor J. Combing variable length codes and turbo codes. In: Proc IEEE VTC, Birmingham, Ala, 2002. 1719–1723

  71. Jeanne M, Carlach J C, Siohan P. Joint source-channel decoding of variable length codes for convolutional codes and turbo codes. IEEE Trans Commun, 2005, 53: 10–15

    Article  Google Scholar 

  72. Jaspar X, Vandendorpe L. New iterative decoding of variable length codes with turbo codes. In: Proc ICC, Paris, 2004. 2606–2610

  73. Tu G, Liu J, Zhang C. Joint source-channel en/decoding based on a new symbol-level joint trellis. Submitted to IEEE Trans Circ Syst Video Tech, 2009

  74. Bauer R, Hagenauer J. Symbol-by-symbol MAP decoding of variable length codes. In: Proc. 3rd ITG Conference on Source and Channel Coding, Munich, 2000. 111–116

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoFang Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, G., Liu, J., Zhang, C. et al. Studies and advances on joint source-channel encoding/decoding techniques in flow media communications. Sci. China Ser. F-Inf. Sci. 53, 1–17 (2010). https://doi.org/10.1007/s11432-010-0001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-0001-4

Keywords

Navigation