Abstract
Joint source-channel coding/decoding (JSCC/JSCD) techniques in flow media communications have become a state-of-the-art and one of the challenging research subjects in the spatial communication area. They have great application prospective and deep impact in various manned space flights, satellite missions, mobile radio communications and deep-space explorations. In the last few years, there have been influential achievements in JSCC/JSCD studies. This paper aims at an introduction to the basic principles of joint source-channel optimal design. A general summarization and classification for various existing JSCC/JSCD methods is addressed. Also presented is a JSCD scheme based on variable-length coding, capable of providing reliable resolutions for flow media data transmission in spatial communications.
Similar content being viewed by others
References
Shannon C E. A mathematical theory of communication. Bell Syst Tech J, 1948, 27: 379–423; 623–656
Vembu S, Verdu S, Steinberg Y. The source-channel separation theorem revisited. IEEE Trans Inf Theory, 1995, 41: 44–54
Hagenauer J. Information and coding theory for mobile communications. In: Diderot Mathematical Forum 2001, Eindhoven, Helsinki, Lausanne, 2001
Hangenauer J. Source controlled channel decoding. IEEE Trans Commun, 1995, 43: 2449–2457
Xiang W. Joint source-channel coding for image transmission and related topics. Ph.D. thesis, University of South Australia, Adelaide, 2003, 12
Liu J, Tu G, Wu W. New iterative super-trellis decoding with source a priori information for VLCs with turbo codes (in Chinese). J Electr, 2007, 24: 122–127
Liu J, Tu G, Zhang C, et al. Joint source and channel decoding for variable length encoded turbo codes. Eurasip J Adv Signal Process, 2008, (1): 7
Hochwald B, Zeger K. Tradeoff between source and channel coding. IEEE Trans Inf Theory, 1997, 43: 1412–1424
Hochwald B. Tradeoff between source and channel coding on a Gaussian channel. IEEE Trans Inf Theory, 1998, 44: 3044–3055
Peng Z, Huang Y F, Costello D J, et al. On the tradeoff between source and channel code rates for image transmission. In: Proc IEEE Int Conf Image Processing. Chicago, IL, 1998. 118–121
Berrou C, Glavieux A. Near optimal error correcting coding and decoding: turbo codes. IEEE Trans Commun, 1996, 44: 1261–1271
Ruf M J, Modestino J W. Operational rate-distortion performance for joint source and channel coding of images. IEEE Trans Image Process, 1999, 8: 305–320
Hagenauer J. Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Trans Commun, 1988, 36: 389–400
Bystrom M, Modestino J W. Combined source-channel coding schemes for video transmission over an additive white Gaussian noise channel. IEEE J Select Areas Commun, 2000, 18: 880–890
Su Y, Lu J, Wang J. A novel algorithm on joint optimization of source coding, channel coding and error concealment for video transmission. Acta Electr Sin, 2001, (1): 1803–1806
Yu C, Lu J, Zheng J. Research on rate control technology in video communications. Measur Control Tech, 2005, 24: 6–13
Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circ Syst Video Tech, 1996, 6: 243–250
Christopoulos C, Skodras A, Ebrahimi T. The JPEG 2000 still image coding system: an overview. IEEE Trans Consum Electr, 2000, 46: 1102–1127
CCSDS 122.0-R-2. Image Data Compression. Draft Recommendation for Space Data System Standards, Red Book, Issue 2, 2005-07
Sherwood P G, Zeger K. Progressive image coding for noisy channels. IEEE Signal Process Lett, 1997, 4: 189–191
Gallant M, Kossentini F. Rate-distortion optimized layered coding with unequal errorprotection for robust Internet video. IEEE Trans Circ Syst Video Tech, 2001, 11: 357–372
Nosratinia A, Lu J, Aazhang B. Source-channel rate allocation for progressive transmission of images. IEEE Trans Commun, 2003, 51: 186–196
Xiao S, Wu C. Joint source channel coding of progressive image over wireless channel. J Electr Inf Tech, 2002, 24: 1835–1841
Xiao S, Zhang F, Wu C. A new method of joint source channel coding based on SPIHT. Chinese J Comput, 2003, 26: 281–286
Huo L, Gao W, Huang Q, et al. Error protection algorithms for scalable multimedia transmission: A survey. J Comput Res Develop, 2005, 42: 1954–1961
Appadwedula S, Jones D L, Ramchandran K, et al. Joint source-channel matching for a wireless communication link. In: Proc IEEE Int Conf Commun, Atlanta, GA, 1998. 482–486
Chande V, Farvardin N. Joint source-channel coding for progressive transmission of embedded source coders. In: Proc IEEE Data Compression Conf, Snowbird, UT, 1999. 52–61
Stanković V, Hamzaoui R, Saupe D. Fast algorithm for rate-based optimal error protection of embedded codes. IEEE Trans Commun, 2003, 51: 1788–1795
Nosratinia A, Lu J, Aazhang B. Source-channel rate allocation for progressive transmission of images. IEEE Trans Commun, 2003, 51: 186–196
Banister B A, Belzer B, Fischer T R. Robust image transmission using JPEG2000 and turbo-codes. IEEE Signal Process Lett, 2002, 9: 117–119
Rowitch D N, Milstein L B. Rate compatible punctured turbo (RCPT) codes in a hybrid FEC/ARQ systems. In: Proc IEEE Global Commun Conf, Phoenix, AZ, 1997. 55–59
Xu W, Guo L, Liu C. Turbo-codes used for progressive image based on SPIHT. J Univ Sci Tech China, 2002, 32: 202–209
Fang Z, Zhou Y, Zou D, et al. MP4 transmission using turbo codes with unequal error protection. J Shanghai Jiaotong Univ, 2004, 38: 542–546
Zhang J, Zhou T. Hybrid ARQ using turbo codes in deep space communication. J Nanjing Univ Sci Tech, 2006, 30: 733–738
Guo R, Liu J. Image encoding based on adaptive segmentation and irregular low-density parity check. J Zhejiang Univ (Eng Sci), 2007, 41: 1298–1302
Kozintsev I, Ramchandran K. Multiresolution joint source-channel coding using embedded constellations for powerconstrained time-varying channels. In: Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, Atlanta, GA, 1996. 2343–2346
Zheng H, Liu J. The subband modulation: A joint power and rate allocation framework for subband image and video transmission. IEEE Trans Circ Syst Video Tech, 1999, 9: 823–838
Kurtenbach A, Wintz P. Quantizing for noisy channels. IEEE Trans Commun Tech, 1969, COM-17: 291–302
Farvardin N, Vaishampayan V. Optimal quantizer design for noisy channels: an approach to combined source-channel coding. IEEE Trans Inf Theory, 1987, IT-33: 827–838
Vaishampayan V, Farvardin N. Optimal block cosine transform image coding for noisy channels. IEEE Trans Commun, 1990, 38: 327–336
Kumazawa H, Kasahara M, Namekawa T. A construction of vector quantizers for noisy channels. Electr Eng Japan, 1984, 67-B: 39–47
Zeger K, Gersho A. Vector quantizer design for memoryless noisy channels. In: Proc IEEE Int Conf Commun, Philadelphia, PA, 1988. 1593–1597
Farvardin N. A study of vector quantization for noisy channels. IEEE Trans Inf Theory, 1990, 36: 799–809
Farvardin N, Vaishampayan V. On the performance and complexity of channel-optimized vector quantizers. IEEE Trans Inf Theory, 1991, 37: 155–160
Kasner J H, Marcellin M W, Hunt B R. Universal trellis coded quantization. IEEE Trans Image Process, 1999, 8: 1677–1687
Wang M, Fischer T R. Trellis-coded quantization designed for noisy channels. IEEE Trans Inf Theory, 1994, 40: 1792–1802
Gao S, Tu G. Robust H.263+ video transmission using partial backward decodable bit stream (PBDBS). IEEE Trans Circ Syst Video Tech, 2003, 13: 182–187
Gao S, Zhang C. Two-way decodable variable length data blocks for robust video transmission. In: Proc SPIE Conf Visual Communications and Image Processing, San Jose, California, USA, 2004. 1277–1285
Takishima Y, Wada M, Murakami H. Reversible variable length codes. IEEE Trans Commun, 1995, 43: 158–162
Wang X, Xie T, Lu J. Error correction performance analysis of error resilient arithmetic code. J Tsinghua Univ (Sci Tech), 2007, 12: 1661–1664
Ma S, Gao W. Excerpt of dissertation: Rate distortion optimization based video coding. J Graduate Univ CAS, 2007, 24: 137–143
Sayood K, Borkenhagen J C. Use of residual redundancy in the design of joint source/channel codes. IEEE Trans Commun, 1991, 39: 838–846
Alajaji F, Phamdo N, Fujia T. Channel codes that exploit the residual redundancy in CELP-encoded speech. IEEE Trans Speech Audio Process, 1996, 4: 325–336
Ruf M J, Hagenauer J. Source-controlled channel decoding in image transmission. In: Proc Workshop Wireless Image/Video Communications, Loughborough, UK, 1996. 14–20
Boudreau D, Dubuc C. APRI-SOVA-based source controlled channel decoding with the ITU-T G.729 speech coding standard. In: Proc 19th Biennial Symp Communications, Paris, France, 1998. 160–163
Fingscheidt T, Hindelang T, Cox R V, et al. Joint source-channel (de-)coding for mobile communications. IEEE Trans Commun, 2002, 50: 200–212
Bahl L R, Cocke J, Jelink F, et al. Optimal decoding of linear codes for minimizing symbol error ratio. IEEE Trans Inf Theory, 1974, 20: 284–287
Zhu G C, Alajaji F. Turbo codes for nonuniform memoryless sources over noisy channels. IEEE Commun Lett, 2002, 6: 64–66
Ruscitto A, Biglieri E M. Joint source and channel coding using turbo codes over rings. IEEE Trans Commun, 1998, 46: 981–984
Peng Z, Huang Y F, Costello D J, et al. Turbo codes for image transmission-a joint channel and source decoding approach. IEEE J Select Areas Commun, 2000, 18: 868–879
Lü J, Yuan D, Sun M. Joint source channel decoding for compressed subband coded image transmission over wireless communication. J Shandong Univ (Eng Sci), 2005, 35: 68–72
Yin W, Wu Y. Joint source-channel iterative decoding based on hidden Markov model. J Commun, 2006, 27: 61–72
Murad A H, Fuja T E. Joint source-channel decoding of variable-length encoded sources. In: Proc ITW’98, Killarney, 1998. 94–95
Demir N, Sayood K. Joint source/channel coding for variable length codes. In: Proc DCC, Snowbird, UT, 1998. 139–148
Park M, Miller D J. Joint source-channel decoding for variable-length encoded data by exact and approximate MAP sequence estimation. IEEE Trans Commun, 2000, 48: 2449–2457
Lavovic K, Villasenor J, Wesel R. Robust joint Huffman and convolutional decoding. In: Proc. IEEE VTC’99, Amsterdam, 1999. 2551–2555
Subbalakshimi K P, Vaisey J. On the joint source-channel decoding of variable-length encoded source: the BSC case. IEEE Trans Commun, 2001, 49: 2052–2055
Bauer R, Hagenauer J. On variable length codes for iterative source/channel decoding. In: Proc DCC, Snowbird, UT, 2001. 273–282
Thobaben R, Kliewer J. Low-complexity iterative joint source-channel decoding for variable-length encoded Markov sources. IEEE Trans Commun, 2005, 53: 2054–2064
Lavovic K, Villasenor J. Combing variable length codes and turbo codes. In: Proc IEEE VTC, Birmingham, Ala, 2002. 1719–1723
Jeanne M, Carlach J C, Siohan P. Joint source-channel decoding of variable length codes for convolutional codes and turbo codes. IEEE Trans Commun, 2005, 53: 10–15
Jaspar X, Vandendorpe L. New iterative decoding of variable length codes with turbo codes. In: Proc ICC, Paris, 2004. 2606–2610
Tu G, Liu J, Zhang C. Joint source-channel en/decoding based on a new symbol-level joint trellis. Submitted to IEEE Trans Circ Syst Video Tech, 2009
Bauer R, Hagenauer J. Symbol-by-symbol MAP decoding of variable length codes. In: Proc. 3rd ITG Conference on Source and Channel Coding, Munich, 2000. 111–116
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tu, G., Liu, J., Zhang, C. et al. Studies and advances on joint source-channel encoding/decoding techniques in flow media communications. Sci. China Ser. F-Inf. Sci. 53, 1–17 (2010). https://doi.org/10.1007/s11432-010-0001-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-010-0001-4