A survey on virtual reality | Science China Information Sciences Skip to main content
Log in

Abstract

Virtual reality (VR) is a scientific method and technology created during the exploration of the nature by human beings to understand, simulate, and better adapt and use the nature. Based on the analysis on the whole process of VR, this paper presents different categories of VR problems and a type of theoretical expression, and abstracts three kinds of scientific and technical problems in VR field. On the basis of foresaid content, this paper also studies current major research objectives, research results and development trend of VR in the aspects of VR modeling method, VR representation technology, human-machine interaction and devices, VR development suites and supporting infrastructure, as well as VR applications. Finally, several theoretical and technical problems that need to be further studied and solved are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heilig M L. Sensorama simulator. US Patent 3 050 870, 1962-08-28

  2. Sutherland I E. The ultimate display. In: Proceedings of the International Federation of Information Processing (IFIP) Congress, 1965. 506–508

  3. Fisher S S, Humphries J, McGreevy M, et al. The virtual environment display system. In: ACM Workshop on Interactive 3D Graphics. New York: ACM Press, 1986. 77–87

    Google Scholar 

  4. Foley J D. Interfaces for advanced computing (cover story). Sci Am Mag, October 1987

  5. Michael H. Metaphysics of Virtual Reality. Oxford: Oxford University Press, 1993

    Google Scholar 

  6. Grigore B, Phillippe C. Virtual Reality Technology. New York: John Wiley and Sons, 1994

    Google Scholar 

  7. Wang C W, Gao W, Wang X R. Theory, Realization and Application of Virtual Reality (VR) Technology (in Chinese). Beijing: Tsinghua University Press, 1996

    Google Scholar 

  8. Zhao Q P. DVENET Distributed Virtual Environment (in Chinese). Beijing: Science Press, 2002

    Google Scholar 

  9. Huang K D, Liu B H, Huang J, et al. Overview of battle simulation technology (in Chinese). J Syst Simul, 2004, 16(9): 1887–1895

    Google Scholar 

  10. Dong S H. Man-machine Interaction (in Chinese). Beijing: Beijing University Press, 2004

    Google Scholar 

  11. Pan Y H, Fan J S. Reality and Virtuality of Tunhuang (in Chinese). Hangzhou: Zhejiang Univeristy Press, 2003

    Google Scholar 

  12. Li B H, Chai X D. Preliminary research and development of complex product virtual sample machine supporting platform (in Chinese). Comput Simul, 2003, 20(1): 4–8

    Google Scholar 

  13. Li D R. Function of digital province and city in state land planning and town construction (in Chinese). J Survey Mapp, 2002, 31(Supplement): 16–21

    Google Scholar 

  14. Sun J G. Computer Graphics (in Chinese). Beijing: Tsinghua University Press, 2002

    Google Scholar 

  15. Dai G Z. Wearable interaction computation (in Chinese). High-tech Commun, 2001, 7: 51–55

    Google Scholar 

  16. Peng Q S. Arithmetic Basis of Computer Photo-realism Graphic (in Chinese). Beijing: Science Press, 1999

    Google Scholar 

  17. Chen C S, Hung Y P, Chung J B. A fast automatic method for registration of partially-overlapping range images. In: Proceedings of IEEE ICCV1998, 1998. 242–248

  18. Huang Q X, Simon F, Gelfaln N, et al. Reassembling fractured objects by geometric matching. ACM Trans Graph, 2006, 25: 569–578

    Article  Google Scholar 

  19. Huber D. Automatic three-dimensional modeling from reality. PhD thesis. Pittsburgh: Carnegie Mellon University, 2002

    Google Scholar 

  20. Amenta N, Bern M, Kamvysselis M. A new voronoi-based surface reconstruction algorithm. In: Cohen M, ed. Proceedings of SIGGRAPH’98. New York: ACM Press, 1998. 415–421

    Google Scholar 

  21. Liepa P. Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. P. O. Box 16 Aire-la-Ville Switzerland: Eurographics Association, 2003. 200–205

    Google Scholar 

  22. Davis J, Marschner S R, Garr M, et al. Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing, Visualization, and Transmission. 2002. 19–21

  23. Ju T. Robust repair of polygonal models. ACM Trans Graph, 2004, 23(3): 888–895

    Article  Google Scholar 

  24. Pauly M, Mitra N J, Giesen J, et al. Example-based 3D scan completion. In: Symposium on Geometry Processing. 2005. 23–32

  25. Sharf A, Alexa M. Context-based surface completion. ACM Trans Graph, 2004, 23(3): 878–887

    Article  Google Scholar 

  26. Mueller P, Zeng G, Wonka P, et al. Image-based procedural modeling of facades. ACM Trans Graph, 2007, 26(3): 85

    Article  Google Scholar 

  27. Hartley R I, Zisserman A. Multiple View Geometry. Cambridge, UK: Cambridge University Press, 2004

    MATH  Google Scholar 

  28. Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision, 2002, 47(1): 7–42

    Article  MATH  Google Scholar 

  29. Wei Y, Ofek E, Quan L, et al. Modeling hair from multiple views. In: Proceedings of ACM SIGGRAPH, 2005. 816–820

  30. Tan P, Zeng G, Wang J D, et al. Image-based tree modeling. Proc ACM SIGGRAPH, 2007, 26(87): 1–7

    Google Scholar 

  31. Matusik W, Pfister H, Ngan A, et al. Image-based 3D photography using opacity hulls. In: Proceedings of ACM SIGGRAPH, San Antonio, Texas, 2002. 427–437

  32. Nicodemus F E, Richmond J C, Hsia J J, et al. Geometrical Considerations and Nomenclature for Reflectance. Washington: National Bureau of Standards, 1997. 1–67

    Google Scholar 

  33. Ngan A, Durand F, Amatusik W. Experimental analysis of BRDF models. In: Eurographics Symposium on Rendering, 2005. 117–226

  34. Jason L, Aner B -A, Christopher D, et al. Inverse shade trees for non-parametric material representation and editing. ACM Trans Graph, 2006, 25: 735–745

    Article  Google Scholar 

  35. Dana K J, Ginneken B V, Nayar S K, et al. Reflectance and texture of real-world surfaces. ACM Trans Graph, 1999, 18: 1–34

    Article  Google Scholar 

  36. Gu J W, Chien I T, Ravi R, et al. Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans Graph, 2006, 25: 762–771

    Article  Google Scholar 

  37. Kalyan S, Ravi R, Peter N B, et al. Time-varying BRDFs. IEEE Trans Visual Comput Graph, 2007, 13: 595–609

    Article  Google Scholar 

  38. Jaffery S M, Dutta K. Digital reconstruction methods for 3D image visulization. In: SPIE Processings and Display of Three-Dimensional Data II, 1984. 155–159

  39. Helgeland A, Andreassen O. Visualization of vector fields using seed LIC and volume rendering. IEEE Trans Visual Comput Graph, 2004, 10(6): 673–682

    Article  Google Scholar 

  40. Taponecco F, Alexa M. Vector field visualization using markov random field texture synthesis. In: Proceedings of the Symposium on Data Visualisation. Switzerland: Eurographics Association, 2003. 195–202

    Google Scholar 

  41. Kaufman D M, Edmunds T, Pai D K. Fast frictional dynamics for rigid bodies. ACM Trans Graph, 2005, 24(3): 946–956

    Article  Google Scholar 

  42. Wong W S -K, Baciu G. A randomized marking scheme for continuous collision detection in simulation of deformable surfaces. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications. New York: ACM Press, 2006. 181–188

    Google Scholar 

  43. Govindaraju N K, Kabul I, Lin M C, et al. Fast continuous collision detection among deformable models using graphics processors. Comput Graph, 2007, 31(1): 5–14

    Article  Google Scholar 

  44. Sorkine O. Laplacian mesh processing. State of the Art Reports. 2005

  45. Botsch M, Sumner R, Pauly M, et al. Deformation transfer for detail-preserving surface editing. In: Proceedings of Vision, Modeling, and Visualization (VMV’ 06). Ios Pr Inc, 2006. 357–364

  46. Thomaszewski B, Wacker M, Straßer W. A consistent bending model for cloth simulation with corotational subdivision finite elements. In: Proceedings of the 2006 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. Switzerland: Eurographics Association, 2006. 107–116

    Google Scholar 

  47. Müller M, Heidelberger B, Hennix M, et al. Position based dynamics. J Visual Commun Image Represent, 2007, 18(2): 109–118

    Article  Google Scholar 

  48. Shi L, Yu Y, Bell N, et al. A fast multigrid algorithm for mesh deformation. ACM Trans Graph, 2006, 25(3): 1108–1117

    Article  Google Scholar 

  49. Huang J, Shi X, Liu X, et al. Subspace gradient domain mesh deformation. ACM Trans Graph, 2006, 25(3): 1126–1134

    Article  Google Scholar 

  50. Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Trans Visual Comput Graph, 2008, 14(1): 213–230

    Article  Google Scholar 

  51. Eitz M, Gu L X. Hierarchical spatial hashing for real-time collision detection. In: IEEE International Conference on Shape Modeling and Applications (SMI’07). Los Alamitos: IEEE Computer Society Press, 2007. 61–70

    Chapter  Google Scholar 

  52. Witkin A, Zoran P. Motion wraping. In: ACM SIGGRAPH. Addison Wesley, 1995. 105–108

  53. Park S I, Shin H J, Shin S Y. On-line locomotion generation based on motion blending. In: Proceedings of ACM SIGGRAPH Symposium on Computer Animation. New York: ACM, 2002. 105–111

    Chapter  Google Scholar 

  54. Girard M. Constrained Optimization of Articulated Animal Movement in Computer Animation. Making Them Move: Mechanics, Control, and Animation of Articulated Figures. Badler B, Zelter, eds. San Francisco: Morgan Kaufmann Publishers, 1990. 209–232

    Google Scholar 

  55. Pew R W, Mavor A S. Modeling Human and Organizational Behavior: Application to Military Simulations. Washington, DC: National Academy Press, 1998

    Google Scholar 

  56. Karr C R, Holbrook R. Modeling Command and Control in WARSIM 2000. In: Proceedings of the 8th Conference on Computer Generated Forces and Behavioral Representation, 1999

  57. Commercial Platform Training Aids. Los Angeles: Institute for Creative Technologies, University of Southern California. http://www.ict.usc.edu/content/view/49/103

  58. Hoff B R. USMC individual combatants. In: Proceedings of the Defense Modeling and Simulation Office Individual Combatant Workshop, VA: Defense Modeling and Simulation Office, Alexandria, July 1–2, 1996

  59. Cora B E -T, Nicholas R J. Using reinforcement learning to coordinate better. Comput Intell, 2005, 21(3): 217–245

    Article  Google Scholar 

  60. Kazakov D, Bartlett M. Cooperation navigation and the faculty of language. Appl Art Intell, 2004, 18(9–10): 885–901

    Article  Google Scholar 

  61. Soar/IFOR: intelligent agents for air simulation and control. In: Nielsen P E, ed. Simulation Conference Proceedings, 3–6 Dec. 1995. 620–625

  62. Regenbrecht H, Wagner M. Interaction in a collaborative augmented reality environment. In: CHI’ 02 Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2002. 504–505

    Chapter  Google Scholar 

  63. Allard J, Ménier C, Raffin B, et al. Grimage: markerless 3D interactions. In: ACM SIGGRAPH 2007 Emerging Technologies. New York: ACM, 2007

    Google Scholar 

  64. Ercan A O, Yang D B, Gamal A E, et al. Optimal placement and selection of camera network nodes for target localization. In: Proceedings of Second IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS). Berlin: Springer, 2006. 389–404

    Google Scholar 

  65. Fusiello A, Murino V. Augmented scene modeling and visualization by optical and acoustic sensor integration. IEEE Trans Visual Comput Graph, 2004, 10(6): 625–636

    Article  Google Scholar 

  66. Billinghurst M, Kato H, Poupyrev I. MagicBook: transitioning between reality and virtuality. In: CHI’ 01 Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2001. 25–26

    Chapter  Google Scholar 

  67. Didier J Y, Roussel D, Mallem M, et al. A texture based time delay compensation method for augmented reality. In: 3rd IEEE and ACM International Symposium on Mixed and Augmented. 2004. 262–263

  68. Chen X W, Milgram P. Integration of pointed-based interposition with binocular disparity alignment in stereoscopic augmented reality environments. In: The Conference on IRIS, 2002

  69. Huang Y, Essa I. Tracking multiple objects through occlusions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005. 1051–1058

    Google Scholar 

  70. Schmidt J, Niemann H, Vogt S. Dense disparity maps in realtime with an application to augmented reality. In: Sixth IEEE Workshop on Applications of Computer Vision. Washington, DC: IEEE Computer Society, 2002. 225–230

    Chapter  Google Scholar 

  71. Pilet J, Geiger A, Pascal L, et al. An all-in-one solution to geometric and photometric calibration. In: IEEE/ACM International Symposium on Mixed and Augmented Reality. Washington, DC: IEEE Computer Society, 2006. 69–78

    Chapter  Google Scholar 

  72. Jacobs K, Nahmias J D, Angus C, et al. Automatic generation of consistent shadows for augmented reality. In: Proceedings of Graphics Interface 2005. Ontario, Canada: Human-Computer Communications Society, 2005. 113–120

    Google Scholar 

  73. Kanbara M, Yokoya N. Real-time estimation of light source environment for photorealistic augmented reality. In: Proceedings of the 17th International Conference on Pattern Recognition. Washington, DC: IEEE Computer Society, 2004. 911–914

    Chapter  Google Scholar 

  74. Hoffman N, Mitchell K. Real-time photorealistic terrain lighting. Game Develop, 2001, 8(7): 32–41

    Google Scholar 

  75. Sloan P -P, Kautz J, Snyder J. Pre-computed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH’ 02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2002. 527–536

    Chapter  Google Scholar 

  76. Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans Graph, 2003, 22(3): 376–381

    Article  Google Scholar 

  77. Zhou K, Hu Y, Lin S, et al. Pre-computed shadow fields for dynamic scenes. ACM Trans Graph, 2005, 24(3): 1196–1201

    Article  Google Scholar 

  78. Sloan P -P, Luna B, Snyder J. Local, deformable pre-computed radiance transfer. ACM Trans Graph, 2005, 24(3): 1216–1224

    Article  Google Scholar 

  79. Ren Z, Wang R, Snyder J, et al. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans Graph, 2006, 25(3): 977–986

    Article  Google Scholar 

  80. Blinn J F. Simulation of wrinkled surfaces. In: Proceedings SIGGRAPH’ 78, 1978. 286–292

  81. Cook R L. Shade trees. In: Proceedings of SIGGRAPH’ 84, Computer Graphics. 1984, 18: 223–231

    Article  Google Scholar 

  82. Kaneko T, Takahei T, Inami M, et al. Detailed shape representation with parallax mapping. In: Proceedings of the ICAT 2001, 2001. 205–208

  83. Oliveira M M, Bishop G, McAllister D. Relief texture mapping. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000. 359–368

  84. Reeves W T, Blau R. Approximate and probabilistic algorithms for shadingand rending structured particle system. In: Proceedings of SIGGRAPH85, Computer Graphics. 1985, 19(3): 313–322

    Article  Google Scholar 

  85. Yuksel C, House D H, Keyser J. Water particles. In: Proceedings SIGGRAPH. New York: ACM Press, 2007. 99–106

    Google Scholar 

  86. Adams B, Pauly M, Keiser R, et al. Adaptively sampled particle fluids. In: ACM SIGGRAPH, 2007

  87. Moon J T, Marschner S R. Simulating multiple scattering in hair using a photon mapping approach. In: International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH’06, 2006. 1067–1074

  88. Quan L, Tan P, Zeng G, et al. Image-based plant modeling. ACM Trans Graph (TOG) and Proc. of SIGGRAPH 2006, 2006, 25(3): 599–604

    Article  Google Scholar 

  89. Lindstrom P, Silva C. A memory insensitive technique for large model simplification. In: IEEE Visualization’ 01, 2001

  90. Hoppe H. View-dependent refinement of progressive meshes. In: Proc. SIGGRAPH’97, Los Angeles, CA, 1997. 189–198

  91. Hoppe H. Progressive meshes. In: Proceedings of the SIGGRAPH’96. 1996, 99–108

  92. Molnar S, Cox M, Ellsworth D, et al. A sorting classification of parallel rendering. IEEE Comp Graph Appl, 1994, 23–31

  93. Adelson E H, Bergen J R. The plenoptic function and the elements of early vision. Computational Models of Visual Processing. Canbridge: The MIT Press, 1991

    Google Scholar 

  94. Shum H -Y, He L -W. Rendering with concentric mosaics. In: SIGGRAPH’99 Computer Graphics, 1999. 299–306

  95. Hayashi K, Kato H, Nishida S. Occlusion detection of real objects using contour based stereo matching. In: Proceedings of the 2005 International Conference on Augmented Teleexistence, 2005. 180–186

  96. Pilet J, Lepetit V, Fua P. Retexturing in the presence of complex illumination and occlusions. In: International Symposium on Mixed and Augmented Reality, Nara, Japan, November 2007

  97. Bradley D, Roth G, Bose P. Augmented reality on cloth with realistic illumination. Mach Vision Appl J, 2007

  98. Jung Y, Franke T, Dähne P, et al. Enhancing X3D for advanced MR appliances. In: ACM Special Interest Group on Computer Graphics and Interactive Techniques, Perugia, Italy, 2007. 27–36

  99. Xie B S, Zhong X L, Rao D, et al. Head-related transfer function database and its analyses. Sci China Ser G-Phys Mech Astron, 2007, 50(3): 267–280

    Article  Google Scholar 

  100. Zotkin D N, Duraiswami R, Davis L S. Victual audio system customization using visual matching of ear parameters. In: Proceedings of IEEE 16th International Conference on Pattern Recognition, 2002

  101. Ionue N. HRTF modeling using physical features. In: Proceedings of Forum Acusticum. Budapest, 2005

  102. Brown C P, Duda R O. A structural model for binaural sound synthesis. IEEE Trans Speech Audio Process, 1998, 6(5): 476–488

    Article  Google Scholar 

  103. Middlebrooks J C. Individual difference in external ear transfer functions reduced by scaling in frequenty. J Acoust Soc Am, 1999, 106(3): 1480–1492

    Article  Google Scholar 

  104. Basdogan C, Srinivasan M A. Haptic rendering in virtual environments. In: Stanney K, ed. Virtual Environments Hand Book. NJ: Lawrence Erlbaum Inc, 2001

    Google Scholar 

  105. Otaduy M A, Lin Ming C. Introduction to haptic rendering. In: International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH 2005, 2005. A3–A33

  106. Wang Y T. Strengthen realistic research progress. In: The 5th China Computer Graphics Conference, 2005

  107. Kruger W, Bohn C A, Frohlich B, et al. The responsive workbench: a virtual work environment. Computer, 1995, 28(7): 42–48

    Article  Google Scholar 

  108. Neira C C, Danie J S, Thomas A D, et al. The CAVE: audio visual experience automatic virtual environment. Commun ACM, 1992, 35(6): 64–72

    Article  Google Scholar 

  109. Rohs M. Marker-based embodied interaction for handheld augmented reality games. J Virtual Reality Broadcast, 2007, 4(5): 793–805

    Google Scholar 

  110. Jones A, Ian M, Yamada H, et al. Rendering for an interactive 360 deg; light field display. In: ACM SIGGRAPH 2007 papers. New York: ACM, 2007

    Google Scholar 

  111. Chen X W, Milgram P. Integration of pointed-based interposition with binocular disparity alignment in stereoscopic augmented reality environments. In: The Conference on IRIS, 2002

  112. Templeman J N, Denbrook P S, Sibert L E. Virtual locomotion: walking in place through virtual environments. Presence: Teleoperat Virtual Environ, 1999, 8(6): 598–617

    Article  Google Scholar 

  113. ISO/IEC 14772-1:1997 and ISO/IEC 14772-2:2004 Virtual Reality Modeling Language (VRML)

  114. X3D architecture and Base Components Edition 2, ISO/IEC FDIS 19775-1.2:2008, Final Draft International Standard, Dec 2007

  115. Universal 3D Specification, http://www.3dif.org. 3D Industry Forum (3DIF)

  116. Zhao Q P, Hao A M, Wang L L, et al. Real-time 3D graphic platform BH_Graph, Comput Research Develop, 2006, 43(9): 1491–1497

    Article  Google Scholar 

  117. IEEE Std 1278–1993: IEEE Standard for Information Technology-Protocols for Distributed Interactive Simulation Applications, Entity Information and Interaction, 1993

  118. Simulation Interoperability Standards Committee (SISC) of the IEEE Computer Society. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) IEEE std 1516–2000, 1516.1–2000, 1516.2–2000. New York: The Institute of Electrical and Electronics Engineers Inc., 2000

  119. Zhou Z, Zhao Q P. Reducing time cost of distributed run-time infrastructure. In: Proceedings of the 16th Internal Conference on Artificial Reality and Telexistence, Hangzhou, Nov 29–Dec 02, 2006, Springer LNCS, 2006, 4282: 969–979

  120. Arthur R P, Rechard L S. The SIMNET Network and Protocols. BBN Systems and Technologies Corporation, Report No. 7627, 1991

  121. Preim B, Bartz D. Visualization in Medicine: Theory, Algorithms and Applications. San Francisco: Morgan Kaufmann Publishers Inc., 2007

    Google Scholar 

  122. Seymour N E, Gallagher A G, Roman S A, et al. Virtual reality surgical laparoscopic simulators: how to choose. Surgic Endosc, 2003, 17: 1943–1950

    Article  Google Scholar 

  123. Andujar C, Fairen M, Brunet P. Affordable projection system for 3D interaction. In: 1st Ibero-American Symposium in Computer Graphics. University of Minho, Portugal, July 2002

    Google Scholar 

  124. Glor P J, Boyle E S. Design evaluation for personnel, training and human factors (DEPTH). In: Reliability and Maintainability Symposium, Proceedings Annual, 1993. 18–25

  125. VIEW. http://www.view.iao.fraunhofer.de

  126. Zhao Q P, Shen X K, Qi Y. Some key technology research on digital museum. J Syst Simulat, 2007, 19(Supp. 2): 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinPing Zhao.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2009CB320805), the National Natural Science Foundation of China (Grant Nos. 60533070, 60503066), and the National High-Tech Research & Development Program of China (Grant Nos. 2006AA01Z333, 2006AA01Z311)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q. A survey on virtual reality. Sci. China Ser. F-Inf. Sci. 52, 348–400 (2009). https://doi.org/10.1007/s11432-009-0066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0066-0

Keywords

Navigation