Execution and perception of upper limb exoskeleton for stroke patients: a systematic review | Intelligent Service Robotics Skip to main content
Log in

Execution and perception of upper limb exoskeleton for stroke patients: a systematic review

  • Review Article
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Due to the lack of therapists and the demand for objective rehabilitation training indicators, the upper limb rehabilitation exoskeleton (ULR-EXO) has attracted more and more concentration. Execution and perception are the two most important technologies of ULR-EXO. A unified analysis of their essential anatomical characteristics and rehabilitation training needs will help to understand the future development trend of the ULR-EXO. According to the anatomical and kinematic features of the upper limb, combined with human-robot compatibility, this paper introduces the structural design of the ULR-EXO, the classification of execution, and the existing problems, summarizes the status quo of perceptual information, and classifies signal sources according to the signals generated by stroke patients in human-robot interaction. This paper also briefly summarizes the control methods of the ULR-EXO in different rehabilitation stages. Finally, based on the two stages of hospital treatment and family rehabilitation, the design requirements of the ULR-EXO and the selection of sensors based on different mechanism forms are discussed, which provides some reference values for researchers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

SMA:

Shape memory alloy

EAP:

Electroactive polymer

EEG:

Electroencephalogram

ECG:

Electrocardiogram

EMG:

Electromyography

sEMG:

Surface electromyography

EOG:

Electrooculogram

IMU:

Inertial measurement units

BMS:

Brunnstrom motor stage

HRIF:

Human-robot interaction force

PAM:

Pneumatic artificial muscles

sEMG:

Surface electromyograph

BCI:

Brain-computer interface

SSVEPs:

Steady-state visual evoked potentials

MI:

Motor imaging

FMG:

Force myography

MMG:

Mechanical myography

PID:

Proportion Integration Differentiation

ICR:

Instantaneous centers of rotation

GSR:

Galvanic skin response

UL-EXO:

Upper limb exoskeleton

VR:

Virtual reality

FFA:

Flexible fluidic actuators

FSR:

Force-sensitive resistor

R-EXO:

Rigid exoskeleton

F-EXO:

Flexible exoskeleton

OT:

Occupational therapy

HRI:

Human-robot interaction

MC:

Muscle-tendon complex

DOF:

Degrees of freedom

ET-ULRR:

End-type upper limb rehabilitation robot

SMP:

Skinned multi-person

References

  1. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil: Assist Technol 11:263–280

    Google Scholar 

  2. Barreca S, Wolf SL, Fasoli S, Bohannon R (2003) Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair 17(4):220–226

    Article  Google Scholar 

  3. Dobkin BH (2004) Strategies for stroke rehabilitation. The Lancet Neurol 3(9):528–536

    Article  Google Scholar 

  4. Dewald JP, Beer RF (2001) Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve: Off J Am Assoc Electrodiagn Med 24(2):273–283

    Article  Google Scholar 

  5. Niyetkaliyev AS, Hussain S, Ghayesh MH, Alici G (2017) Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Human-Mach Syst 47(6):1134–1145

    Article  Google Scholar 

  6. Galve Ceamanos S (2018) Eeg based volitional interaction with a robot to dynamically replan trajectories. Master’s thesis, Universitat Politecnica de Catalunya

  7. Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J Neuroeng Rehabil 1(1):1–15

    Article  Google Scholar 

  8. Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R (2005) The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005. pp 511–514. IEEE

  9. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11(1):1–29

    Article  Google Scholar 

  10. Gaponov I, Popov D, Lee SJ, Ryu J-H (2017) Auxilio: a portable cable-driven exosuit for upper extremity assistance. Int J Control, Autom Syst 15(1):73–84

    Article  Google Scholar 

  11. Galiana I, Hammond FL, Howe RD, Popovic MB (2012) Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 317–322. IEEE

  12. Xu K, Qiu D, Simaan N (2011) A pilot investigation of continuum robots as a design alternative for upper extremity exoskeletons. In: 2011 IEEE international conference on robotics and biomimetics, pp 656–662. IEEE

  13. Dinh BK, Xiloyannis M, Antuvan CW, Cappello L, Masia L (2017) Hierarchical cascade controller for assistance modulation in a soft wearable arm exoskeleton. IEEE Robot Autom Lett 2(3):1786–1793

    Article  Google Scholar 

  14. Cappello L, Binh DK, Yen S-C, Masia L (2016) Design and preliminary characterization of a soft wearable exoskeleton for upper limb. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), pp 623–630. IEEE

  15. Lessard S, Pansodtee P, Robbins A, Baltaxe-Admony LB, Trombadore JM, Teodorescu M, Agogino A, Kurniawan S (2017) Crux: a compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation. In: 2017 international conference on rehabilitation robotics (ICORR), pp 1633–1638. IEEE

  16. Bembli S, Haddad NK, Belghith S (2021) An exoskeleton–upper limb system control using a robust model free terminal sliding mode with emg signal. In: 2021 international conference on control, automation and diagnosis (ICCAD), pp 1–8. IEEE

  17. Bennett RL (1966) The evolution of the georgia warm springs foundation feeder. Artificial limbs 10(1):5–9

    Google Scholar 

  18. Park H-S, Ren Y, Zhang L-Q (2008) Intelliarm: an exoskeleton for diagnosis and treatment of patients with neurological impairments. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 109–114. IEEE

  19. Ruiz AF, Rocon E, Forner-Cordero A (2009) Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Appl Bionics Biomech 6(2):205–216

    Article  Google Scholar 

  20. Frisoli A, Loconsole C, Leonardis D, Banno F, Barsotti M, Chisari C, Bergamasco M (2012) A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst, Man, Cybernet, Part C (Applications and Reviews) 42(6):1169–1179

    Article  Google Scholar 

  21. Novak D, Riener R (2013) Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE

  22. Myopro orthosis available online: https://myomo.com

  23. Lagoda C, Moreno JC, Pons JL (2012) Human-robot interfaces in exoskeletons for gait training after stroke: State of the art and challenges. Appl Bionics Biomech 9(2):193–203

    Article  Google Scholar 

  24. Li J, Cao Q, Dong M, Zhang C (2021) Compatibility evaluation of a 4 dof ergonomic exoskeleton for upper limb rehabilitation. Mech Mach Theory 156:104146

    Article  Google Scholar 

  25. Schiele A, Letier P, Van Der Linde R, Van Der Helm F (2006) Bowden cable actuator for force-feedback exoskeletons. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 3599–3604. IEEE

  26. Klein J, Spencer S, Allington J, Bobrow JE, Reinkensmeyer DJ (2010) Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot 26(4):710–715

    Article  Google Scholar 

  27. Chiaradia D, Xiloyannis M, Antuvan CW, Frisoli A, Masia L (2018) Design and embedded control of a soft elbow exosuit. In: 2018 IEEE international conference on soft robotics (RoboSoft), pp 565–571. IEEE

  28. Dehez B, Sapin J (2011) Shouldero, an alignment-free two-dof rehabilitation robot for the shoulder complex. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–8. IEEE

  29. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring D, Wanberg J, Balasubramanian S et al (2007) Design and control of rupert: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346

    Article  Google Scholar 

  30. Tang Z, Zhang K, Sun S, Gao Z, Zhang L, Yang Z (2014) An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 14(4):6677–6694

    Article  Google Scholar 

  31. Hamaya M, Matsubara T, Teramae T, Noda T, Morimoto J (2021) Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots. Int J Robot Res 40(1):397–410

    Article  Google Scholar 

  32. Copaci D, Martin F, Moreno L, Blanco D (2019) Sma based elbow exoskeleton for rehabilitation therapy and patient evaluation. IEEE Access 7:31473–31484

    Article  Google Scholar 

  33. Serrano D, Copaci D-S, Moreno L, Blanco D (2018) Sma based wrist exoskeleton for rehabilitation therapy. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2318–2323. IEEE

  34. Copaci DS, Flores Caballero A, Blanco Rojas MD, Moreno Lorente LE (2016) Shoulder exoskeleton for rehabilitation actuated with shape memory alloy

  35. Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med Eng Phys 34(3):261–268

    Article  Google Scholar 

  36. Spath, W.E., Walter, W.W.: Feasibility of integrating multiple types of electroactive polymers to develop an artificial human muscle. In: ASME International Mechanical Engineering Congress and Exposition, vol. 44465, pp. 661–667 (2010)

  37. Ward AB (2012) A literature review of the pathophysiology and onset of poststroke spasticity. Eur J Neurol 19(1):21–27

    Article  Google Scholar 

  38. Ahsan MR, Ibrahimy MI, Khalifa OO et al (2009) Emg signal classification for human computer interaction: a review. Eur J Sci Res 33(3):480–501

    Google Scholar 

  39. Puh U, Hoehlein B, Deutsch JE (2019) Validity and reliability of the kinect for assessment of standardized transitional movements and balance: systematic review and translation into practice. Phys Med Rehabil Clin 30(2):399–422

    Article  Google Scholar 

  40. Gopura R, Bandara D, Kiguchi K, Mann GK (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220

    Article  Google Scholar 

  41. Hao X, Xiong A (2021) Advances and disturbances in semg-based intentions and movements recognition: a review. IEEE Sens J 21(12):13019–13028. https://doi.org/10.1109/JSEN.2021.3068521

    Article  Google Scholar 

  42. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A (2017) Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil 14(1):1–21

    Article  Google Scholar 

  43. Cao MY, Laws S, y Baena FR (2021) Six-axis force/torque sensors for robotics applications: a review. IEEE Sens J 21(24):27238–27251. https://doi.org/10.1109/JSEN.2021.3123638

    Article  Google Scholar 

  44. Chen W, Xiong C, Huang X, Sun R, Xiong Y (2010) Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living. Gait Posture 32(4):475–481

    Article  Google Scholar 

  45. Li J, Zhang Z, Tao C, Ji R (2017) A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons. Int J Adv Robot Syst 14(3):1729881417710796

    Article  Google Scholar 

  46. Neumann DA (2016) Kinesiology of the Musculoskeletal System-e-book: Foundations for Rehabilitation. Elsevier Health Sciences

    Google Scholar 

  47. Nef T, Riener R (2008) Shoulder actuation mechanisms for arm rehabilitation exoskeletons. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 862–868. IEEE

  48. Koo D, Chang PH, Sohn MK, Shin J-h (2011) Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE

  49. Huang C-Y, Lin G-H, Huang Y-J, Song C-Y, Lee Y-C, How M-J, Chen Y-M, Hsueh I-P, Chen M-H, Hsieh C-L (2016) Improving the utility of the brunnstrom recovery stages in patients with stroke: validation and quantification. Medicine 95(31):e4508

    Article  Google Scholar 

  50. Gladstone DJ, Danells CJ, Black SE (2002) The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16(3):232–240

    Article  Google Scholar 

  51. Naghdi S, Ansari NN, Mansouri K, Hasson S (2010) A neurophysiological and clinical study of brunnstrom recovery stages in the upper limb following stroke. Brain Injury 24(11):1372–1378

    Article  Google Scholar 

  52. Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408–417

    Article  Google Scholar 

  53. Nann M, Cordella F, Trigili E, Lauretti C, Bravi M, Miccinilli S, Catalan JM, Badesa FJ, Crea S, Bressi F et al (2021) Restoring activities of daily living using an eeg/eog-controlled semiautonomous and mobile whole-arm exoskeleton in chronic stroke. IEEE Syst J 15(2):2314–2321. https://doi.org/10.1109/JSYST.2020.3021485

    Article  Google Scholar 

  54. Xiao F, Gao Y, Wang Y, Zhu Y, Zhao J (2018) Design and evaluation of a 7-dof cable-driven upper limb exoskeleton. J Mech Sci Technol 32(2):855–864

    Article  Google Scholar 

  55. Naidu D, Stopforth R, Bright G, Davrajh S (2012) A portable passive physiotherapeutic exoskeleton. Int J Adv Robot Syst 9(4):137

    Article  Google Scholar 

  56. Vanderniepen I, Van Ham R, Van Damme M, Versluys R, Lefeber D (2009) Orthopaedic rehabilitation: a powered elbow orthosis using compli- ant actuation. In: 2009 IEEE international conference on rehabilitation robotics, pp 172–177. IEEE

  57. Ebrahimi A, Gröninger D, Singer R, Schneider U (2017) Control parameter optimization of the actively powered upper body exoskeleton using subjective feedbacks. In: 2017 3rd international conference on control, automation and robotics (ICCAR), pp 432–437. IEEE

  58. Nef T, Riener R (2005) Armin-design of a novel arm rehabilitation robot. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005., pp 57–60. IEEE

  59. Frisoli A, Rocchi F, Marcheschi S, Dettori A, Salsedo F, Bergamasco M (2005) A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics conference, pp 195–201. IEEE

  60. Li M, Guo W, Xu G, Jia Y, Xie J, Zhang X (2018) A tendon-driven upper-limb rehabilitation robot. In: 2018 15th international conference on ubiquitous robots (UR), pp 302–308. IEEE

  61. Ergin MA, Patoglu V (2012) Assiston-se: A self-aligning shoulder-elbow exoskeleton. In: 2012 IEEE international conference on robotics and automation, pp 2479–2485. IEEE

  62. Kiguchi K, Fukuda T (2007) Upper-limb exoskeletons for physically weak persons. Rehabilitation Robotics, August, 287–299

  63. Vitiello N, Lenzi T, Roccella S, De Rossi SMM, Cattin E, Giovacchini F, Vecchi F, Carrozza MC (2012) Neuroexos: a powered elbow exoskeleton for physical rehabilitation. IEEE Trans Robot 29(1):220–235

    Article  Google Scholar 

  64. Longatelli V, Antonietti A, Biffi E, Diella E, D’Angelo MG, Rossini M, Molteni F, Bocciolone M, Pedrocchi A, Gandolla M (2021) User-centred assistive system for arm functions in neuromuscular subjects (useful): a randomized controlled study. J NeuroEng Rehabil 18(1):1–16

    Article  Google Scholar 

  65. Johnson G, Carus D, Parrini G, Marchese S, Valeggi R (2001) The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng, Part H: J Eng Med 215(3):275–284

    Article  Google Scholar 

  66. Chou W, Wang T, Xiao J (2004) Haptic interaction with virtual environment using an arm type exoskeleton device. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04. 2004, vol. 2, pp 1992–1997. IEEE

  67. Nef T, Mihelj M, Riener R (2007) Armin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput 45(9):887–900

    Article  Google Scholar 

  68. Nef T, Guidali M, Riener R (2009) Armin iii–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142

    Article  Google Scholar 

  69. Ball SJ, Brown IE, Scott SH (2007) A planar 3dof robotic exoskeletonfor rehabilitation and assessment. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp 4024–4027. IEEE

  70. Rocon E, Belda-Lois JM, Ruiz A, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15(3):367–378

    Article  Google Scholar 

  71. Stein J, Narendran K, McBean J, Krebs K, Hughes R (2007) Electromyography-controlled exoskeletal upper-limb–powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 86(4):255–261

    Article  Google Scholar 

  72. Martinez F, Retolaza I, Pujana-Arrese A, Cenitagoya A, Basurko J, Landaluze J (2008) Design of a five actuated dof upper limb exoskeleton oriented to workplace help. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 169–174. IEEE

  73. Letier P, Avraam M, Veillerette S, Horodinca M, De Bartolomei M, Schiele A, Preumont A (2008) Sam: a 7-dof portable arm exoskeleton with local joint control. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 3501–3506. IEEE

  74. Kiguchi, K., Quan, Q.: Muscle-model-oriented emg-based control of an upper-limb power-assist exoskeleton with a neuro-fuzzy modifier. In: 2008 IEEEInternational Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1179–1184 (2008). IEEE

  75. Garrec, P., Friconneau, J.-P., Measson, Y., Perrot, Y.: Able, an innovative transparent exoskeleton for the upper-limb. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1483–1488 (2008). IEEE

  76. Colizzi L, Lidonnici A, Pignolo L (2009) The aramis project: a concept robot and technical design. Journal of rehabilitation medicine 41(12):1011–1015

    Article  Google Scholar 

  77. Lenzi, T., De Rossi, S., Vitiello, N., Chiri, A., Roccella, S., Giovacchini, F., Vecchi, F., Carrozza, M.C.: The neuro-robotics paradigm: Neurarm, neuroexos, handexos. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2430–2433 (2009). IEEE

  78. Yagi E, Harada D, Kobayashi M (2009) Development of an upper limb power assist system using pneumatic actuators for farming lift-up motion. Journal of System Design and Dynamics 3(5):781–791

    Article  Google Scholar 

  79. Culmer PR, Jackson AE, Makower S, Richardson R, Cozens JA, Levesley MC, Bhakta BB (2009) A control strategy for upper limb robotic rehabilitation with a dual robot system. IEEE/ASME Transactions on Mechatronics 15(4):575–585

    Article  Google Scholar 

  80. Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., Bretthauer, G.: Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: 2009 IEEE International Conference on Rehabilitation Robotics, pp. 167–171 (2009). IEEE

  81. Jiang X, Xiong C, Sun R, Xiong Y (2010) Characteristics of the robotic arm of a 9-dof upper limb rehabilitation robot powered by pneumatic muscles. In: international conference on intelligent robotics and pplications, pp 463–474. Springer

  82. Ahman M, Ouimet T, Saad M, Kenne J, Archambault P (2010) Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. In: IECON 2010-36th annual conference on IEEE industrial electronics society, pp 1506–1511. IEEE

  83. Sankai Y (2010) Hal: Hybrid assistive limb based on cybernics. Robotics Research. Springer, Berlin, pp 25–34

    Chapter  Google Scholar 

  84. Ueda J, Ming D, Krishnamoorthy V, Shinohara M, Ogasawara T (2010) Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans Neural Syst Rehabil Eng 18(4):339–350

    Article  Google Scholar 

  85. Ren Y, Park HS, Li Y, Wang L, Zhang L-Q (2010) A wearable robot for upper limb rehabilitation of patients with neurological disorders. In: 2010 IEEE international conference on robotics and biomimetics, pp 64–68. IEEE

  86. Hasegawa Y, Oura S (2011) Exoskeletal meal assistance system (emas ii) for progressive muscle dystrophy patient. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE

  87. Ozkul F, Barkana DE (2011) Design and control of an upper limb exoskeleton robot rehabroby. In: conference towards autonomous robotic systems, pp 125–136. Springer

  88. Zhang H, Austin H, Buchanan S, Herman R, Koeneman J, He J (2011) Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using rupert. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE

  89. Wang W-W, Fu L-C (2011) Mirror therapy with an exoskeleton upper-limb robot based on imu measurement system. In: 2011 IEEE international symposium on medical measurements and applications, pp 370–375. IEEE

  90. Kim K, Hong K-J, Kim N-G, Kwon T-K (2011) Assistance of the elbow flexion motion on the active elbow orthosis using muscular stiffness force feedback. J Mech Sci Technol 25(12):3195–3203

    Article  Google Scholar 

  91. De Lee G, Wang W-W, Lee K-W, Lin S-Y, Fu L-C, Lai J-S, Chen W-S, Luh J-J (2012) Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. In: 2012 12th international conference on control, automation and systems, pp 1943–1948. IEEE

  92. Gmerek A (2012) The virtual reality system used for upper extremity rehabilitation. In: 2012 17th international conference on methods & models in automation & robotics (MMAR), pp 312–314. IEEE

  93. Ren Y, Kang SH, Park H-S, Wu Y-N, Zhang L-Q (2012) Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 21(3):490–499

    Article  Google Scholar 

  94. Mao Y, Agrawal SK (2012) Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans Robot 28(4):922–931

    Article  Google Scholar 

  95. Mao Y, Agrawal SK (2012) Transition from mechanical arm to human arm with carex: A cable driven arm exoskeleton (carex) for neural rehabilitation. In: 2012 IEEE international conference on robotics and automation, pp 2457–2462. IEEE

  96. Ando T, Watanabe M, Nishimoto K, Matsumoto Y, Seki M, Fujie MG (2012) Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using stfts and tdnn. J Robot Mechatron 24(1):141–149

    Article  Google Scholar 

  97. Wang R-J, Huang H-P (2012) Avser—active variable stiffness exoskeleton robot system: Design and application for safe active-passive elbow rehabilitation. In: 2012 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 220–225. IEEE

  98. Li Z, Wang B, Sun F, Yang C, Xie Q, Zhang W (2013) semg-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform 18(3):1043–1050

    Google Scholar 

  99. Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, Klein J, Valencia D, Belloso A, Morin FO, Spüler M, Birbaumer N, Ramos-Murguialday A (2017) An eeg-based brain-machine interface to control a 7-degrees of freedom exoskeleton for stroke rehabilitation. In: Ibáñez J, González-Vargas J, Azorín JM, Akay M, Pons JL (eds) Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 1127–1131

    Chapter  Google Scholar 

  100. Benitez LMV, Tabie M, Will N, Schmidt S, Jordan M, Kirchner EA (2013) Exoskeleton technology in rehabilitation: Towards an emg-based orthosis system for upper limb neuromotor rehabilitation. J Robot 2013:1–13. https://doi.org/10.1155/2013/610589

    Article  Google Scholar 

  101. Ripel T, Krejsa J, Hrbacek J, Cizmar I (2014) Active elbow orthosis. Int J Adv Robot Syst 11(9):143

    Article  Google Scholar 

  102. Xiao ZG, Elnady AM, Webb J, Menon C (2014) Towards a brain computer interface driven exoskeleton for upper extremity rehabilitation. In: 5th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, pp 432–437. IEEE

  103. Desplenter T, Kyrylova A, Stanbury T, Escoto A, Chinchalkar S, Trejos AL (2014) A wearable mechatronic brace for arm rehabilitation. In: 5th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, pp 491–496. IEEE

  104. Looned R, Webb J, Xiao ZG, Menon C (2014) Assisting drinking with an affordable bci-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 11(1):1–13

    Article  Google Scholar 

  105. Fitle KD, Pehlivan AU, O’Malley MK (2015) A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 4960–4966. IEEE

  106. Beigzadeh B, Ilami M, Najafian S (2015) Design and development of one degree of freedom upper limb exoskeleton. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), pp 223–228. IEEE

  107. Gunasekara M, Gopura R, Jayawardena S (2015) 6-rexos: Upper limb exoskeleton robot with improved phri. Int J Adv Robot Syst 12(4):47

    Article  Google Scholar 

  108. Sutapun A, Sangveraphunsiri V (2015) A 4-dof upper limb exoskeleton for stroke rehabilitation: kinematics mechanics and control. Int J Mech Eng Robot Res 4(3):269–272

    Google Scholar 

  109. Mahdavian M, Toudeshki AG, Yousefi-Koma A (2015) Design and fabrication of a 3dof upper limb exoskeleton. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), pp 342–346. IEEE

  110. Rosales Y, Lopez R, Rosales I, Salazar S, Lozano R (2015) Design and modeling of an upper limb exoskeleton. In: 2015 19th international conference on system theory, control and computing (ICSTCC), pp 266–272. IEEE

  111. Otten A, Voort C, Stienen A, Aarts R, van Asseldonk E, van der Kooij H (2015) Limpact: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Trans Mechatron 20(5):2285–2298

    Article  Google Scholar 

  112. Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yoz-batiran N, Blank AA, French J, Karmonik C, Grossman RG, O’Malley MK et al (2016) Design and optimization of an eeg-based brain machine interface (bmi) to an upper-limb exoskeleton for stroke survivors. Front Neurosci 10:122

    Article  Google Scholar 

  113. Wahyunggoro O, Nugroho HA, et al. (2016) String actuated upper limbexoskeleton based on surface electromyography control. In: 2016 6th international annual engineering seminar (InAES), pp 176–181. IEEE

  114. Sharma MK, Ordonez R (2016) Design and fabrication of an intention based upper-limb exo-skeleton. In: 2016 IEEE international symposium on intelligent control (ISIC), pp 1–6. IEEE

  115. Wu Q, Wang X, Du F (2016) Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb. Proc Inst Mech Eng, Part C: J Mech Eng Sci 230(20):3777–3790

    Article  Google Scholar 

  116. Cui X, Chen W, Jin X, Agrawal SK (2016) Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172

    Article  Google Scholar 

  117. McDonald CG, Dennis TA, O’Malley MK (2017) Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton. In: 2017 international conference on rehabilitation robotics (ICORR), pp 164–169. IEEE

  118. Montaño JG, Cena CEG, Chamorro LJM, Destarac MA, Pazmiño RS (2017) Mechanical design of a robotic exoskeleton for upper limb rehabilitation. Advances in automation and robotics research in latin America. Springer, Berlin, pp 297–308

    Chapter  Google Scholar 

  119. Jarrett C, McDaid A (2017) Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans Neural Syst Rehabil Eng 25(7):976–986

    Article  Google Scholar 

  120. Madani T, Daachi B, Djouani K (2016) Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems. IEEE Trans Control Syst Technol 25(3):1133–1140

    Article  Google Scholar 

  121. Sui D, Fan J, Jin H, Cai X, Zhao J, Zhu Y (2017) Design of a wearable upper-limb exoskeleton for activities assistance of daily living. In: 2017 IEEE international conference on advanced intelligent mechatronics (AIM), pp 845–850. IEEE

  122. Oguntosin VW, Mori Y, Kim H, Nasuto SJ, Kawamura S, Hayashi Y (2017) Design and validation of exoskeleton actuated by soft modules toward neurorehabilitation—vision-based control for precise reaching motion of upper limb. Front Neurosci 11:352

    Article  Google Scholar 

  123. Copaci D, Flores A, Rueda F, Alguacil I, Blanco D, Moreno L (2017) Wearable elbow exoskeleton actuated with shape memory alloy. In: Ibáñez J, González-Vargas J, Azorín JM, Akay M, Pons JL (eds) Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 477–481

    Chapter  Google Scholar 

  124. Crea S, Cempini M, Mazzoleni S, Carrozza MC, Posteraro F, Vitiello N (2017) Phase-ii clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Front Neurosci 11:261

    Article  Google Scholar 

  125. Hsieh H-C, Chen D-F, Chien L, Lan C-C (2017) Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Trans Mechatron 22(5):2034–2045

    Article  Google Scholar 

  126. Accogli A, Grazi L, Crea S, Panarese A, Carpaneto J, Vitiello N, Micera S (2017) Emg-based detection of user’s intentions for human-machine shared control of an assistive upper-limb exoskeleton. In: González-Vargas J, Ibáñez J, Contreras-Vidal JL, van der Kooij H, Pons JL (eds) Wearable robotics: challenges and trends. Springer, Cham, pp 181–185

    Chapter  Google Scholar 

  127. Nam HS, Koh S, Kim YJ, Beom J, Lee WH, Lee S-U, Kim S (2017) Biomechanical reactions of exoskeleton neurorehabilitation robots in spastic elbows and wrists. IEEE Trans Neural Syst Rehabil Eng 25(11):2196–2203

    Article  Google Scholar 

  128. Zeiaee A, Soltani-Zarrin R, Langari R, Tafreshi R (2017) Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. In: 2017 international conference on rehabilitation robotics (ICORR), pp 759–764. IEEE

  129. Yu H, Choi IS, Han K-L, Choi JY, Chung G, Suh J (2018) Development of a upper-limb exoskeleton robot for refractory construction. Control Eng Pract 72:104–113

    Article  Google Scholar 

  130. Christensen S, Bai S (2018) Kinematic analysis and design of a novel shoulder exoskeleton using a double parallelogram linkage. J Mech Robot. https://doi.org/10.1115/1.4040132

    Article  Google Scholar 

  131. Ghonasgi K, de Oliveira AC, Shafer A, Rose CG, Deshpande AD (2019) Estimating the effect of robotic intervention on elbow joint motion. In: 2019 28th ieee international conference on robot and human interactive communication (RO-MAN), pp. 1–6. IEEE

  132. Chen T, Casas R, Lum PS (2019) An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential. IEEE Trans Robot 35(6):1464–1474

    Article  Google Scholar 

  133. Alex arm. available online: http://www.wearable-robotics.com/kinetek

  134. Kyeong S, Na Y, Kim J (2020) A mechatronic mirror-image motion device for symmetric upper-limb rehabilitation. Int J Precis Eng Manuf 21:1–10

    Article  Google Scholar 

  135. Xu P, Li J, Li S, Xia D, Zeng Z, Yang N, Xie L (2022) Design and evaluation of a parallel cable-driven shoulder mechanism with series springs. J Mech Robot. https://doi.org/10.1115/1.4052972

    Article  Google Scholar 

  136. Gull MA, Thoegersen M, Bengtson SH, Mohammadi M, Andreasen Struijk LN, Moeslund TB, Bak T, Bai S (2021) A 4-dof upper limb exoskeleton for physical assistance: design, modeling, control and performance evaluation. Appl Sci 11(13):5865

    Article  Google Scholar 

  137. Yue X, Qingcong W, Chen B, Chen X (2021) Ssvep-based active control of an upper limb exoskeleton using a low-cost brain–computer interface. Ind Robot: Int J Robot Res Appl 49(1):150–159. https://doi.org/10.1108/IR-03-2021-0062

    Article  Google Scholar 

  138. Li N, Yang T, Yu P, Chang J, Zhao L, Zhao X, Elhajj IH, Xi N, Liu L (2018) Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications. Bioinspir Biomim 13(6):066001

    Article  Google Scholar 

  139. Kazerooni H (1988) Human machine interaction via the transfer of power and information signals; part ii: Dynamics and control analysis. In: Proceedings of the AMCE winter annual meeting, pp 163–75. Citeseer

  140. Kazerooni H (1990) Human-robot interaction via the transfer of power and information signals. IEEE Trans Syst, Man, Cybern 20(2):450–463

    Article  Google Scholar 

  141. Xiong C, Jiang X, Sun R, Huang X, Xiong Y (2009) Control methods for exoskeleton rehabilitation robot driven with pneumatic muscles. Ind Robot: Int J 36(3):210–220. https://doi.org/10.1108/01439910910950469

    Article  Google Scholar 

  142. Copaci D, Serrano D, Moreno L, Blanco D (2018) A high-level controlalgorithm based on semg signalling for an elbow joint sma exoskeleton. Sensors 18(8):2522

    Article  Google Scholar 

  143. Behzadipour S, Khajepour A (2006) Stiffness of cable-based parallel manipulators with application to stability analysis

  144. Xu K, Wang Y, Qiu D (2013) Design simulations of the sjtu continuum arm exoskeleton (scax). In: international conference on intelligent robotics and applications, pp 351–362. Springer

  145. Templeman JO, Sheil BB, Sun T (2020) Multi-axis force sensors: a state-of-the-art review. Sens Actuators A: Phys 304:111772

    Article  Google Scholar 

  146. Liu K, Xiong C-H, He L, Chen W-B, Huang X-L (2018) Postural synergy based design of exoskeleton robot replicating human arm reaching movements. Robot Auton Syst 99:84–96

    Article  Google Scholar 

  147. Schiele A, Hirzinger G (2011) A new generation of ergonomic exoskeletons-the high-performance x-arm-2 for space robotics telepresence. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 2158–2165. IEEE

  148. Baltaxe-Admony LB, Robbins AS, Jung EA, Lessard S, Teodorescu M, SunSpiral V, Agogino A (2016) Simulating the human shoulder through active tensegrity structures. In: international design engineering technical conferences and computers and information in engineering conference, vol. 50183, pp 006–09027. American Society of Mechanical Engineers

  149. Li Q, Yang J (2010) Study on the classification of motor unit action potentials from single-channel surface emg signal based on the wavelet analysis. J Biomed Eng 27(4):893–897

    Google Scholar 

  150. Yin YH, Fan YJ, Xu LD (2012) Emg and epp-integrated human–machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Technol Biomed 16(4):542–549

    Article  Google Scholar 

  151. Huang S, Cai S, Li G, Chen Y, Xie L (2019) Variable robot-resistance rehabilitation for upper limb based on an semg-driven model. In: 2019 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 814–818. IEEE

  152. Otsuka T, Kawaguchi K, Kawamoto H, Sankai Y (2011) Development of upper-limb type hal and reaching movement for meal-assistance. In: 2011 IEEE international conference on robotics and biomimetics, pp 883–888. IEEE

  153. Krasin V, Gandhi V, Yang Z, Karamanoglu M (2015) Emg based elbow joint powered exoskeleton for biceps brachii strength augmentation. In: 2015 international joint conference on neural networks (IJCNN), pp 1–6. IEEE

  154. Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC (2011) Proportional emg control for upper-limb powered exoskeletons. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 628–631. IEEE

  155. Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in eeg-based bci. IEEE Trans Biomed Eng 58(6):1865–1873

    Article  Google Scholar 

  156. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  Google Scholar 

  157. McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalo-graphic (eeg) control of three-dimensional movement. J Neural Eng 7(3):036007

    Article  Google Scholar 

  158. Xia B, Maysam O, Veser S, Cao L, Li J, Jia J, Xie H, Birbaumer N (2015) A combination strategy based brain–computer interface for two-dimensional movement control. J Neural Eng 12(4):046021

    Article  Google Scholar 

  159. Bulea TC, Kilicarslan A, Ozdemir R, Paloski WH, ContrerasVidal JL (2013) Simultaneous scalp electroencephalography (eeg), electromyography (emg), and whole-body segmental inertial recording for multi-modal neural decoding. J Vis Exp: JoVE 26(77):e50602

    Google Scholar 

  160. Yang L, Song Y, Ma K, Xie L (2021) Motor imagery eeg decoding method based on a discriminative feature learning strategy. IEEE Trans Neural Syst Rehabil Eng 29:368–379

    Article  Google Scholar 

  161. Khosla A, Khandnor P, Chand T (2020) A comparative analysis of signal processing and classification methods for different applications based on eeg signals. Biocybern Biomed Eng 40(2):649–690

    Article  Google Scholar 

  162. Bai Z, Fong KN, Zhang JJ, Chan J, Ting K (2020) Immediate and long-term effects of bci-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 17:1–20

    Article  Google Scholar 

  163. Cervera MA, Soekadar SR, Ushiba J, Millán JDR, Liu M, Birbaumer N, Garipelli G (2018) Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol 5(5):651–663

    Article  Google Scholar 

  164. Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G (2010) An ssvep bci to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5

    Article  Google Scholar 

  165. Sakurada T, Kawase T, Takano K, Komatsu T, Kansaku K (2013) A bmi-based occupational therapy assist suit: asynchronous control by ssvep. Front Neurosci 7:172

    Article  Google Scholar 

  166. Padfield N, Zabalza J, Zhao H, Masero V, Ren J (2019) Eeg-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors 19(6):1423

    Article  Google Scholar 

  167. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279

    Article  Google Scholar 

  168. Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, MullerPutz GR (2010) Self-paced operation of an ssvep-based orthosis with and without an imagery-based “brain switch:” a feasibility study towards a hybrid bci. IEEE Trans Neural Syst Rehabil Eng 18(4):409–414

    Article  Google Scholar 

  169. Soekadar S, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza M, Cohen L, Birbaumer N et al (2016) Hybrid eeg/eog-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci Robot 1(1):eaag3296

    Article  Google Scholar 

  170. Gajwani PS, Chhabria SA (2010) Eye motion tracking for wheelchair control. Int J Inf Technol 2(2):185–187

    Google Scholar 

  171. Chang W-D (2019) Electrooculograms for human–computer interaction: a review. Sensors 19(12):2690

    Article  Google Scholar 

  172. Barea R, Boquete L, Mazo M, López E (2002) Wheelchair guidance strategies using eog. J Intell Robot Syst 34(3):279–299

    Article  MATH  Google Scholar 

  173. Islam MR, Bai S (2019) Payload estimation using forcemyography sensors for control of upper-body exoskeleton in load carrying assistance

  174. Ravindra V, Castellini C (2014) A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front Neurorobot 8:24

    Article  Google Scholar 

  175. Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W (1999) Abiomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng 7(2):121–129

    Article  Google Scholar 

  176. Lukowicz P, Hanser F, Szubski C, Schobersberger W (2006) Detecting and interpreting muscle activity with wearable force sensors. In: international conference on pervasive computing, pp 101–116. Springer

  177. Amft O, Junker H, Lukowicz P, Troster G, Schuster C (2006) Sensing muscle activities with body-worn sensors. In: international workshop on wearable and implantable body sensor networks (BSN’06), p 4. IEEE

  178. Cho E, Chen R, Merhi L-K, Xiao Z, Pousett B, Menon C (2016) Force myography to control robotic upper extremity prostheses: a feasibility study. Front Bioeng Biotechnol 4:18

    Article  Google Scholar 

  179. Connan M, Ruiz Ramirez E, Vodermayer B, Castellini C (2016) Assessment of a wearable force-and electromyography device and comparison of the related signals for myocontrol. Front Neurorobot 10:17

    Article  Google Scholar 

  180. Godiyal AK, Verma HK, Khanna N, Joshi D (2018) A force myography-based system for gait event detection in overground and ramp walking. IEEE Trans Instrum Meas 67(10):2314–2323

    Article  Google Scholar 

  181. Delva ML, Lajoie K, Khoshnam M, Menon C (2020) Wrist-worn wearables based on force myography: on the significance of user anthropometry. BioMed Eng OnLine 19(1):1–18

    Article  Google Scholar 

  182. Lee BJ, Williams A, Ben-Tzvi P (2018) Intelligent object grasping with sensor fusion for rehabilitation and assistive applications. IEEE Trans Neural Syst Rehabil Eng 26(8):1556–1565

    Article  Google Scholar 

  183. Sadun A, Jalani J, Sukor J (2016) Force sensing resistor (fsr): a brief overview and the low-cost sensor for active compliance control. In: First international workshop on pattern recognition, vol. 10011, p 1001112 (2016). International Society for Optics and Photonics

  184. Aiguo S, Liyue F (2019) Multi-dimensional force sensor for haptic interaction: a review. Virtual Real Intell Hardw 1(2):121–135

    Article  Google Scholar 

  185. Kim J-H (2019) Multi-axis force-torque sensors for measuring zero-moment point in humanoid robots: a review. IEEE Sens J 20(3):1126–1141

    Article  Google Scholar 

  186. He L, Xiong C, Liu K, Huang J, He C, Chen W (2018) Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control. J Bionic Eng 15(2):247–259

    Article  Google Scholar 

  187. Schlagenhauf F, Sreeram S, Singhose W (2018) Comparison of kinect and vicon motion capture of upper-body joint angle tracking. In: 2018 IEEE 14th international conference on control and automation (ICCA), pp 674–679. IEEE

  188. Pasinetti S, Hassan MM, Eberhardt J, Lancini M, Docchio F, Sansoni G (2019) Performance analysis of the pmd camboard picoflexx time-of-flight camera for markerless motion capture applications. IEEE Trans Instrum Meas 68(11):4456–4471

    Article  Google Scholar 

  189. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images. CVPR 2011:1297–1304

    Google Scholar 

  190. Fankhauser P, Bloesch M, Rodriguez D, Kaestner R, Hutter M, Siegwart R (2015) Kinect v2 for mobile robot navigation: evaluation and modeling. In: 2015 international conference on advanced robotics (ICAR), pp 388–394. IEEE

  191. Nuzzi C, Pasinetti S, Pagani R, Docchio F, Sansoni G (2019) Hand gesture recognition for collaborative workstations: A smart command system prototype. In: international conference on image analysis and processing, pp 332–342 (2019). Springer

  192. Leightley D, McPhee JS, Yap MH (2016) Automated analysis and quantification of human mobility using a depth sensor. IEEE J Biomed Health Inform 21(4):939–948

    Article  Google Scholar 

  193. Theofanidis M, Lioulemes A, Makedon F (20196) A motion and force analysis system for human upper-limb exercises. In: Proceedings of the 9th ACM international conference on pervasive technologies related to assistive environments, pp 1–8

  194. Wade E, Mataric MJ (2009) Design and testing of lightweight inexpensive motion-capture devices with application to clinical gait analysis. In: 2009 3rd international conference on pervasive computing technologies for healthcare, pp 1–7 (2009). IEEE

  195. Yin Z-X, Xu H-M (2018) A wearable rehabilitation game controller usingimu sensor. In: 2018 IEEE international conference on applied system invention (ICASI), pp 1060–1062 (2018). IEEE

  196. Bonnet V, Joukov V, Kulic D, Fraisse P, Ramdani N, Venture G (2016) Monitoring of hip and knee joint angles using a single inertial measurement unit during lower limb rehabilitation. IEEE Sens J 16(6):1557–1564. https://doi.org/10.1109/JSEN.2015.2503765

    Article  Google Scholar 

  197. Wittmann F, Lambercy O, Gonzenbach RR, van Raai MA, Höver R, Held J, Starkey ML, Curt A, Luft A, Gassert R (2015) Assessmentdriven armtherapy at home using an imu-based virtual reality system. In: 2015 IEEE international conference on rehabilitation robotics (ICORR), pp 707–712 (2015). IEEE

  198. Kim W, Beom J, Park C, Koh S, Kim YJ, Kim Y, Chung SG, Kim S (2018) Reliability and validity of attitude and heading reference systemmotion estimation in a novel mirror therapy system. J Med Biol Eng 38(3):370–377

    Article  Google Scholar 

  199. Cuesta-Vargas AI, Galán-Mercant A, Williams JM (2010) The use of inertial sensors system for human motion analysis. Phys Ther Rev 15(6):462–473

    Article  Google Scholar 

  200. Brigante CM, Abbate N, Basile A, Faulisi AC, Sessa S (2011) Towards miniaturization of a mems-based wearable motion capture system. IEEE Trans Ind Electron 58(8):3234–3241

    Article  Google Scholar 

  201. Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A (2015) Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors 15(8):18813–18833

    Article  Google Scholar 

  202. Douoguih WA, Dolce DL, Lincoln AE (2015) Early cocking phase mechanics and upper extremity surgery risk in starting professional baseball pitchers. Orthop J Sports Med 3(4):2325967115581594

    Article  Google Scholar 

  203. Ghanipoor F, Hashemi M, Salarieh H (2020) Toward calibration of low-precision mems imu using a nonlinear model and tukf. IEEE Sens J 20(8):4131–4138

    Article  Google Scholar 

  204. de Villa SG, Mart´ın AJ, Dom´ınguez JJG (2020) Adaptive imu-basedcalibration of the center of joints for movement analysis: One case study. In: 2020 IEEE international symposium on medical measurements and applications (MeMeA), pp 1–6 (2020). IEEE

  205. Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H (2018) Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl 2(3):283–295

    Article  Google Scholar 

  206. Calanca A, Muradore R, Fiorini P (2015) A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans Mechatron 21(2):613–624

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Zhaoqi Guo, Mr. Bowen Zheng and Mr. Shuoyu Li for their valuable comments in this manuscript and provide some professional knowledge.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. 52075177), the National Key Research and Development Program of China (Grant Nos. 2021YFB3301400), Research Foundation of Guangdong Province (Grant Nos. 2019A050505001 and 2018KZDXM002), Guangzhou Research Foundation (Grant Nos. 202002030324 and 201903010028), Zhongshan Research Foundation (Grant Nos.2020B2020 and 2021B2022).

Author information

Authors and Affiliations

Authors

Contributions

PX mainly summarizes the current key issues in the development of upper extremity exoskeleton system for patients with hemiplegia, put forward the future development trends and hot spots, and drafted the manuscript. DX, JL, JZ, LX assisted in graph analysis and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Longhan Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Xia, D., Li, J. et al. Execution and perception of upper limb exoskeleton for stroke patients: a systematic review. Intel Serv Robotics 15, 557–578 (2022). https://doi.org/10.1007/s11370-022-00435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-022-00435-5

Keywords

Navigation