Abstract
Due to the lack of therapists and the demand for objective rehabilitation training indicators, the upper limb rehabilitation exoskeleton (ULR-EXO) has attracted more and more concentration. Execution and perception are the two most important technologies of ULR-EXO. A unified analysis of their essential anatomical characteristics and rehabilitation training needs will help to understand the future development trend of the ULR-EXO. According to the anatomical and kinematic features of the upper limb, combined with human-robot compatibility, this paper introduces the structural design of the ULR-EXO, the classification of execution, and the existing problems, summarizes the status quo of perceptual information, and classifies signal sources according to the signals generated by stroke patients in human-robot interaction. This paper also briefly summarizes the control methods of the ULR-EXO in different rehabilitation stages. Finally, based on the two stages of hospital treatment and family rehabilitation, the design requirements of the ULR-EXO and the selection of sensors based on different mechanism forms are discussed, which provides some reference values for researchers in this field.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Abbreviations
- SMA:
-
Shape memory alloy
- EAP:
-
Electroactive polymer
- EEG:
-
Electroencephalogram
- ECG:
-
Electrocardiogram
- EMG:
-
Electromyography
- sEMG:
-
Surface electromyography
- EOG:
-
Electrooculogram
- IMU:
-
Inertial measurement units
- BMS:
-
Brunnstrom motor stage
- HRIF:
-
Human-robot interaction force
- PAM:
-
Pneumatic artificial muscles
- sEMG:
-
Surface electromyograph
- BCI:
-
Brain-computer interface
- SSVEPs:
-
Steady-state visual evoked potentials
- MI:
-
Motor imaging
- FMG:
-
Force myography
- MMG:
-
Mechanical myography
- PID:
-
Proportion Integration Differentiation
- ICR:
-
Instantaneous centers of rotation
- GSR:
-
Galvanic skin response
- UL-EXO:
-
Upper limb exoskeleton
- VR:
-
Virtual reality
- FFA:
-
Flexible fluidic actuators
- FSR:
-
Force-sensitive resistor
- R-EXO:
-
Rigid exoskeleton
- F-EXO:
-
Flexible exoskeleton
- OT:
-
Occupational therapy
- HRI:
-
Human-robot interaction
- MC:
-
Muscle-tendon complex
- DOF:
-
Degrees of freedom
- ET-ULRR:
-
End-type upper limb rehabilitation robot
- SMP:
-
Skinned multi-person
References
Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil: Assist Technol 11:263–280
Barreca S, Wolf SL, Fasoli S, Bohannon R (2003) Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair 17(4):220–226
Dobkin BH (2004) Strategies for stroke rehabilitation. The Lancet Neurol 3(9):528–536
Dewald JP, Beer RF (2001) Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve: Off J Am Assoc Electrodiagn Med 24(2):273–283
Niyetkaliyev AS, Hussain S, Ghayesh MH, Alici G (2017) Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Human-Mach Syst 47(6):1134–1145
Galve Ceamanos S (2018) Eeg based volitional interaction with a robot to dynamically replan trajectories. Master’s thesis, Universitat Politecnica de Catalunya
Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J Neuroeng Rehabil 1(1):1–15
Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R (2005) The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005. pp 511–514. IEEE
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11(1):1–29
Gaponov I, Popov D, Lee SJ, Ryu J-H (2017) Auxilio: a portable cable-driven exosuit for upper extremity assistance. Int J Control, Autom Syst 15(1):73–84
Galiana I, Hammond FL, Howe RD, Popovic MB (2012) Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 317–322. IEEE
Xu K, Qiu D, Simaan N (2011) A pilot investigation of continuum robots as a design alternative for upper extremity exoskeletons. In: 2011 IEEE international conference on robotics and biomimetics, pp 656–662. IEEE
Dinh BK, Xiloyannis M, Antuvan CW, Cappello L, Masia L (2017) Hierarchical cascade controller for assistance modulation in a soft wearable arm exoskeleton. IEEE Robot Autom Lett 2(3):1786–1793
Cappello L, Binh DK, Yen S-C, Masia L (2016) Design and preliminary characterization of a soft wearable exoskeleton for upper limb. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), pp 623–630. IEEE
Lessard S, Pansodtee P, Robbins A, Baltaxe-Admony LB, Trombadore JM, Teodorescu M, Agogino A, Kurniawan S (2017) Crux: a compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation. In: 2017 international conference on rehabilitation robotics (ICORR), pp 1633–1638. IEEE
Bembli S, Haddad NK, Belghith S (2021) An exoskeleton–upper limb system control using a robust model free terminal sliding mode with emg signal. In: 2021 international conference on control, automation and diagnosis (ICCAD), pp 1–8. IEEE
Bennett RL (1966) The evolution of the georgia warm springs foundation feeder. Artificial limbs 10(1):5–9
Park H-S, Ren Y, Zhang L-Q (2008) Intelliarm: an exoskeleton for diagnosis and treatment of patients with neurological impairments. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 109–114. IEEE
Ruiz AF, Rocon E, Forner-Cordero A (2009) Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Appl Bionics Biomech 6(2):205–216
Frisoli A, Loconsole C, Leonardis D, Banno F, Barsotti M, Chisari C, Bergamasco M (2012) A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst, Man, Cybernet, Part C (Applications and Reviews) 42(6):1169–1179
Novak D, Riener R (2013) Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE
Myopro orthosis available online: https://myomo.com
Lagoda C, Moreno JC, Pons JL (2012) Human-robot interfaces in exoskeletons for gait training after stroke: State of the art and challenges. Appl Bionics Biomech 9(2):193–203
Li J, Cao Q, Dong M, Zhang C (2021) Compatibility evaluation of a 4 dof ergonomic exoskeleton for upper limb rehabilitation. Mech Mach Theory 156:104146
Schiele A, Letier P, Van Der Linde R, Van Der Helm F (2006) Bowden cable actuator for force-feedback exoskeletons. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 3599–3604. IEEE
Klein J, Spencer S, Allington J, Bobrow JE, Reinkensmeyer DJ (2010) Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot 26(4):710–715
Chiaradia D, Xiloyannis M, Antuvan CW, Frisoli A, Masia L (2018) Design and embedded control of a soft elbow exosuit. In: 2018 IEEE international conference on soft robotics (RoboSoft), pp 565–571. IEEE
Dehez B, Sapin J (2011) Shouldero, an alignment-free two-dof rehabilitation robot for the shoulder complex. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–8. IEEE
Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring D, Wanberg J, Balasubramanian S et al (2007) Design and control of rupert: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346
Tang Z, Zhang K, Sun S, Gao Z, Zhang L, Yang Z (2014) An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 14(4):6677–6694
Hamaya M, Matsubara T, Teramae T, Noda T, Morimoto J (2021) Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots. Int J Robot Res 40(1):397–410
Copaci D, Martin F, Moreno L, Blanco D (2019) Sma based elbow exoskeleton for rehabilitation therapy and patient evaluation. IEEE Access 7:31473–31484
Serrano D, Copaci D-S, Moreno L, Blanco D (2018) Sma based wrist exoskeleton for rehabilitation therapy. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2318–2323. IEEE
Copaci DS, Flores Caballero A, Blanco Rojas MD, Moreno Lorente LE (2016) Shoulder exoskeleton for rehabilitation actuated with shape memory alloy
Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med Eng Phys 34(3):261–268
Spath, W.E., Walter, W.W.: Feasibility of integrating multiple types of electroactive polymers to develop an artificial human muscle. In: ASME International Mechanical Engineering Congress and Exposition, vol. 44465, pp. 661–667 (2010)
Ward AB (2012) A literature review of the pathophysiology and onset of poststroke spasticity. Eur J Neurol 19(1):21–27
Ahsan MR, Ibrahimy MI, Khalifa OO et al (2009) Emg signal classification for human computer interaction: a review. Eur J Sci Res 33(3):480–501
Puh U, Hoehlein B, Deutsch JE (2019) Validity and reliability of the kinect for assessment of standardized transitional movements and balance: systematic review and translation into practice. Phys Med Rehabil Clin 30(2):399–422
Gopura R, Bandara D, Kiguchi K, Mann GK (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220
Hao X, Xiong A (2021) Advances and disturbances in semg-based intentions and movements recognition: a review. IEEE Sens J 21(12):13019–13028. https://doi.org/10.1109/JSEN.2021.3068521
Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A (2017) Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil 14(1):1–21
Cao MY, Laws S, y Baena FR (2021) Six-axis force/torque sensors for robotics applications: a review. IEEE Sens J 21(24):27238–27251. https://doi.org/10.1109/JSEN.2021.3123638
Chen W, Xiong C, Huang X, Sun R, Xiong Y (2010) Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living. Gait Posture 32(4):475–481
Li J, Zhang Z, Tao C, Ji R (2017) A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons. Int J Adv Robot Syst 14(3):1729881417710796
Neumann DA (2016) Kinesiology of the Musculoskeletal System-e-book: Foundations for Rehabilitation. Elsevier Health Sciences
Nef T, Riener R (2008) Shoulder actuation mechanisms for arm rehabilitation exoskeletons. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 862–868. IEEE
Koo D, Chang PH, Sohn MK, Shin J-h (2011) Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE
Huang C-Y, Lin G-H, Huang Y-J, Song C-Y, Lee Y-C, How M-J, Chen Y-M, Hsueh I-P, Chen M-H, Hsieh C-L (2016) Improving the utility of the brunnstrom recovery stages in patients with stroke: validation and quantification. Medicine 95(31):e4508
Gladstone DJ, Danells CJ, Black SE (2002) The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16(3):232–240
Naghdi S, Ansari NN, Mansouri K, Hasson S (2010) A neurophysiological and clinical study of brunnstrom recovery stages in the upper limb following stroke. Brain Injury 24(11):1372–1378
Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408–417
Nann M, Cordella F, Trigili E, Lauretti C, Bravi M, Miccinilli S, Catalan JM, Badesa FJ, Crea S, Bressi F et al (2021) Restoring activities of daily living using an eeg/eog-controlled semiautonomous and mobile whole-arm exoskeleton in chronic stroke. IEEE Syst J 15(2):2314–2321. https://doi.org/10.1109/JSYST.2020.3021485
Xiao F, Gao Y, Wang Y, Zhu Y, Zhao J (2018) Design and evaluation of a 7-dof cable-driven upper limb exoskeleton. J Mech Sci Technol 32(2):855–864
Naidu D, Stopforth R, Bright G, Davrajh S (2012) A portable passive physiotherapeutic exoskeleton. Int J Adv Robot Syst 9(4):137
Vanderniepen I, Van Ham R, Van Damme M, Versluys R, Lefeber D (2009) Orthopaedic rehabilitation: a powered elbow orthosis using compli- ant actuation. In: 2009 IEEE international conference on rehabilitation robotics, pp 172–177. IEEE
Ebrahimi A, Gröninger D, Singer R, Schneider U (2017) Control parameter optimization of the actively powered upper body exoskeleton using subjective feedbacks. In: 2017 3rd international conference on control, automation and robotics (ICCAR), pp 432–437. IEEE
Nef T, Riener R (2005) Armin-design of a novel arm rehabilitation robot. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005., pp 57–60. IEEE
Frisoli A, Rocchi F, Marcheschi S, Dettori A, Salsedo F, Bergamasco M (2005) A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics conference, pp 195–201. IEEE
Li M, Guo W, Xu G, Jia Y, Xie J, Zhang X (2018) A tendon-driven upper-limb rehabilitation robot. In: 2018 15th international conference on ubiquitous robots (UR), pp 302–308. IEEE
Ergin MA, Patoglu V (2012) Assiston-se: A self-aligning shoulder-elbow exoskeleton. In: 2012 IEEE international conference on robotics and automation, pp 2479–2485. IEEE
Kiguchi K, Fukuda T (2007) Upper-limb exoskeletons for physically weak persons. Rehabilitation Robotics, August, 287–299
Vitiello N, Lenzi T, Roccella S, De Rossi SMM, Cattin E, Giovacchini F, Vecchi F, Carrozza MC (2012) Neuroexos: a powered elbow exoskeleton for physical rehabilitation. IEEE Trans Robot 29(1):220–235
Longatelli V, Antonietti A, Biffi E, Diella E, D’Angelo MG, Rossini M, Molteni F, Bocciolone M, Pedrocchi A, Gandolla M (2021) User-centred assistive system for arm functions in neuromuscular subjects (useful): a randomized controlled study. J NeuroEng Rehabil 18(1):1–16
Johnson G, Carus D, Parrini G, Marchese S, Valeggi R (2001) The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng, Part H: J Eng Med 215(3):275–284
Chou W, Wang T, Xiao J (2004) Haptic interaction with virtual environment using an arm type exoskeleton device. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04. 2004, vol. 2, pp 1992–1997. IEEE
Nef T, Mihelj M, Riener R (2007) Armin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput 45(9):887–900
Nef T, Guidali M, Riener R (2009) Armin iii–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142
Ball SJ, Brown IE, Scott SH (2007) A planar 3dof robotic exoskeletonfor rehabilitation and assessment. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp 4024–4027. IEEE
Rocon E, Belda-Lois JM, Ruiz A, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15(3):367–378
Stein J, Narendran K, McBean J, Krebs K, Hughes R (2007) Electromyography-controlled exoskeletal upper-limb–powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 86(4):255–261
Martinez F, Retolaza I, Pujana-Arrese A, Cenitagoya A, Basurko J, Landaluze J (2008) Design of a five actuated dof upper limb exoskeleton oriented to workplace help. In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 169–174. IEEE
Letier P, Avraam M, Veillerette S, Horodinca M, De Bartolomei M, Schiele A, Preumont A (2008) Sam: a 7-dof portable arm exoskeleton with local joint control. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 3501–3506. IEEE
Kiguchi, K., Quan, Q.: Muscle-model-oriented emg-based control of an upper-limb power-assist exoskeleton with a neuro-fuzzy modifier. In: 2008 IEEEInternational Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1179–1184 (2008). IEEE
Garrec, P., Friconneau, J.-P., Measson, Y., Perrot, Y.: Able, an innovative transparent exoskeleton for the upper-limb. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1483–1488 (2008). IEEE
Colizzi L, Lidonnici A, Pignolo L (2009) The aramis project: a concept robot and technical design. Journal of rehabilitation medicine 41(12):1011–1015
Lenzi, T., De Rossi, S., Vitiello, N., Chiri, A., Roccella, S., Giovacchini, F., Vecchi, F., Carrozza, M.C.: The neuro-robotics paradigm: Neurarm, neuroexos, handexos. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2430–2433 (2009). IEEE
Yagi E, Harada D, Kobayashi M (2009) Development of an upper limb power assist system using pneumatic actuators for farming lift-up motion. Journal of System Design and Dynamics 3(5):781–791
Culmer PR, Jackson AE, Makower S, Richardson R, Cozens JA, Levesley MC, Bhakta BB (2009) A control strategy for upper limb robotic rehabilitation with a dual robot system. IEEE/ASME Transactions on Mechatronics 15(4):575–585
Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., Bretthauer, G.: Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: 2009 IEEE International Conference on Rehabilitation Robotics, pp. 167–171 (2009). IEEE
Jiang X, Xiong C, Sun R, Xiong Y (2010) Characteristics of the robotic arm of a 9-dof upper limb rehabilitation robot powered by pneumatic muscles. In: international conference on intelligent robotics and pplications, pp 463–474. Springer
Ahman M, Ouimet T, Saad M, Kenne J, Archambault P (2010) Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. In: IECON 2010-36th annual conference on IEEE industrial electronics society, pp 1506–1511. IEEE
Sankai Y (2010) Hal: Hybrid assistive limb based on cybernics. Robotics Research. Springer, Berlin, pp 25–34
Ueda J, Ming D, Krishnamoorthy V, Shinohara M, Ogasawara T (2010) Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans Neural Syst Rehabil Eng 18(4):339–350
Ren Y, Park HS, Li Y, Wang L, Zhang L-Q (2010) A wearable robot for upper limb rehabilitation of patients with neurological disorders. In: 2010 IEEE international conference on robotics and biomimetics, pp 64–68. IEEE
Hasegawa Y, Oura S (2011) Exoskeletal meal assistance system (emas ii) for progressive muscle dystrophy patient. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE
Ozkul F, Barkana DE (2011) Design and control of an upper limb exoskeleton robot rehabroby. In: conference towards autonomous robotic systems, pp 125–136. Springer
Zhang H, Austin H, Buchanan S, Herman R, Koeneman J, He J (2011) Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using rupert. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE
Wang W-W, Fu L-C (2011) Mirror therapy with an exoskeleton upper-limb robot based on imu measurement system. In: 2011 IEEE international symposium on medical measurements and applications, pp 370–375. IEEE
Kim K, Hong K-J, Kim N-G, Kwon T-K (2011) Assistance of the elbow flexion motion on the active elbow orthosis using muscular stiffness force feedback. J Mech Sci Technol 25(12):3195–3203
De Lee G, Wang W-W, Lee K-W, Lin S-Y, Fu L-C, Lai J-S, Chen W-S, Luh J-J (2012) Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. In: 2012 12th international conference on control, automation and systems, pp 1943–1948. IEEE
Gmerek A (2012) The virtual reality system used for upper extremity rehabilitation. In: 2012 17th international conference on methods & models in automation & robotics (MMAR), pp 312–314. IEEE
Ren Y, Kang SH, Park H-S, Wu Y-N, Zhang L-Q (2012) Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 21(3):490–499
Mao Y, Agrawal SK (2012) Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans Robot 28(4):922–931
Mao Y, Agrawal SK (2012) Transition from mechanical arm to human arm with carex: A cable driven arm exoskeleton (carex) for neural rehabilitation. In: 2012 IEEE international conference on robotics and automation, pp 2457–2462. IEEE
Ando T, Watanabe M, Nishimoto K, Matsumoto Y, Seki M, Fujie MG (2012) Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using stfts and tdnn. J Robot Mechatron 24(1):141–149
Wang R-J, Huang H-P (2012) Avser—active variable stiffness exoskeleton robot system: Design and application for safe active-passive elbow rehabilitation. In: 2012 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 220–225. IEEE
Li Z, Wang B, Sun F, Yang C, Xie Q, Zhang W (2013) semg-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform 18(3):1043–1050
Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, Klein J, Valencia D, Belloso A, Morin FO, Spüler M, Birbaumer N, Ramos-Murguialday A (2017) An eeg-based brain-machine interface to control a 7-degrees of freedom exoskeleton for stroke rehabilitation. In: Ibáñez J, González-Vargas J, Azorín JM, Akay M, Pons JL (eds) Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 1127–1131
Benitez LMV, Tabie M, Will N, Schmidt S, Jordan M, Kirchner EA (2013) Exoskeleton technology in rehabilitation: Towards an emg-based orthosis system for upper limb neuromotor rehabilitation. J Robot 2013:1–13. https://doi.org/10.1155/2013/610589
Ripel T, Krejsa J, Hrbacek J, Cizmar I (2014) Active elbow orthosis. Int J Adv Robot Syst 11(9):143
Xiao ZG, Elnady AM, Webb J, Menon C (2014) Towards a brain computer interface driven exoskeleton for upper extremity rehabilitation. In: 5th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, pp 432–437. IEEE
Desplenter T, Kyrylova A, Stanbury T, Escoto A, Chinchalkar S, Trejos AL (2014) A wearable mechatronic brace for arm rehabilitation. In: 5th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, pp 491–496. IEEE
Looned R, Webb J, Xiao ZG, Menon C (2014) Assisting drinking with an affordable bci-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 11(1):1–13
Fitle KD, Pehlivan AU, O’Malley MK (2015) A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 4960–4966. IEEE
Beigzadeh B, Ilami M, Najafian S (2015) Design and development of one degree of freedom upper limb exoskeleton. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), pp 223–228. IEEE
Gunasekara M, Gopura R, Jayawardena S (2015) 6-rexos: Upper limb exoskeleton robot with improved phri. Int J Adv Robot Syst 12(4):47
Sutapun A, Sangveraphunsiri V (2015) A 4-dof upper limb exoskeleton for stroke rehabilitation: kinematics mechanics and control. Int J Mech Eng Robot Res 4(3):269–272
Mahdavian M, Toudeshki AG, Yousefi-Koma A (2015) Design and fabrication of a 3dof upper limb exoskeleton. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), pp 342–346. IEEE
Rosales Y, Lopez R, Rosales I, Salazar S, Lozano R (2015) Design and modeling of an upper limb exoskeleton. In: 2015 19th international conference on system theory, control and computing (ICSTCC), pp 266–272. IEEE
Otten A, Voort C, Stienen A, Aarts R, van Asseldonk E, van der Kooij H (2015) Limpact: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Trans Mechatron 20(5):2285–2298
Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yoz-batiran N, Blank AA, French J, Karmonik C, Grossman RG, O’Malley MK et al (2016) Design and optimization of an eeg-based brain machine interface (bmi) to an upper-limb exoskeleton for stroke survivors. Front Neurosci 10:122
Wahyunggoro O, Nugroho HA, et al. (2016) String actuated upper limbexoskeleton based on surface electromyography control. In: 2016 6th international annual engineering seminar (InAES), pp 176–181. IEEE
Sharma MK, Ordonez R (2016) Design and fabrication of an intention based upper-limb exo-skeleton. In: 2016 IEEE international symposium on intelligent control (ISIC), pp 1–6. IEEE
Wu Q, Wang X, Du F (2016) Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb. Proc Inst Mech Eng, Part C: J Mech Eng Sci 230(20):3777–3790
Cui X, Chen W, Jin X, Agrawal SK (2016) Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172
McDonald CG, Dennis TA, O’Malley MK (2017) Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton. In: 2017 international conference on rehabilitation robotics (ICORR), pp 164–169. IEEE
Montaño JG, Cena CEG, Chamorro LJM, Destarac MA, Pazmiño RS (2017) Mechanical design of a robotic exoskeleton for upper limb rehabilitation. Advances in automation and robotics research in latin America. Springer, Berlin, pp 297–308
Jarrett C, McDaid A (2017) Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans Neural Syst Rehabil Eng 25(7):976–986
Madani T, Daachi B, Djouani K (2016) Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems. IEEE Trans Control Syst Technol 25(3):1133–1140
Sui D, Fan J, Jin H, Cai X, Zhao J, Zhu Y (2017) Design of a wearable upper-limb exoskeleton for activities assistance of daily living. In: 2017 IEEE international conference on advanced intelligent mechatronics (AIM), pp 845–850. IEEE
Oguntosin VW, Mori Y, Kim H, Nasuto SJ, Kawamura S, Hayashi Y (2017) Design and validation of exoskeleton actuated by soft modules toward neurorehabilitation—vision-based control for precise reaching motion of upper limb. Front Neurosci 11:352
Copaci D, Flores A, Rueda F, Alguacil I, Blanco D, Moreno L (2017) Wearable elbow exoskeleton actuated with shape memory alloy. In: Ibáñez J, González-Vargas J, Azorín JM, Akay M, Pons JL (eds) Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 477–481
Crea S, Cempini M, Mazzoleni S, Carrozza MC, Posteraro F, Vitiello N (2017) Phase-ii clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Front Neurosci 11:261
Hsieh H-C, Chen D-F, Chien L, Lan C-C (2017) Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Trans Mechatron 22(5):2034–2045
Accogli A, Grazi L, Crea S, Panarese A, Carpaneto J, Vitiello N, Micera S (2017) Emg-based detection of user’s intentions for human-machine shared control of an assistive upper-limb exoskeleton. In: González-Vargas J, Ibáñez J, Contreras-Vidal JL, van der Kooij H, Pons JL (eds) Wearable robotics: challenges and trends. Springer, Cham, pp 181–185
Nam HS, Koh S, Kim YJ, Beom J, Lee WH, Lee S-U, Kim S (2017) Biomechanical reactions of exoskeleton neurorehabilitation robots in spastic elbows and wrists. IEEE Trans Neural Syst Rehabil Eng 25(11):2196–2203
Zeiaee A, Soltani-Zarrin R, Langari R, Tafreshi R (2017) Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. In: 2017 international conference on rehabilitation robotics (ICORR), pp 759–764. IEEE
Yu H, Choi IS, Han K-L, Choi JY, Chung G, Suh J (2018) Development of a upper-limb exoskeleton robot for refractory construction. Control Eng Pract 72:104–113
Christensen S, Bai S (2018) Kinematic analysis and design of a novel shoulder exoskeleton using a double parallelogram linkage. J Mech Robot. https://doi.org/10.1115/1.4040132
Ghonasgi K, de Oliveira AC, Shafer A, Rose CG, Deshpande AD (2019) Estimating the effect of robotic intervention on elbow joint motion. In: 2019 28th ieee international conference on robot and human interactive communication (RO-MAN), pp. 1–6. IEEE
Chen T, Casas R, Lum PS (2019) An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential. IEEE Trans Robot 35(6):1464–1474
Alex arm. available online: http://www.wearable-robotics.com/kinetek
Kyeong S, Na Y, Kim J (2020) A mechatronic mirror-image motion device for symmetric upper-limb rehabilitation. Int J Precis Eng Manuf 21:1–10
Xu P, Li J, Li S, Xia D, Zeng Z, Yang N, Xie L (2022) Design and evaluation of a parallel cable-driven shoulder mechanism with series springs. J Mech Robot. https://doi.org/10.1115/1.4052972
Gull MA, Thoegersen M, Bengtson SH, Mohammadi M, Andreasen Struijk LN, Moeslund TB, Bak T, Bai S (2021) A 4-dof upper limb exoskeleton for physical assistance: design, modeling, control and performance evaluation. Appl Sci 11(13):5865
Yue X, Qingcong W, Chen B, Chen X (2021) Ssvep-based active control of an upper limb exoskeleton using a low-cost brain–computer interface. Ind Robot: Int J Robot Res Appl 49(1):150–159. https://doi.org/10.1108/IR-03-2021-0062
Li N, Yang T, Yu P, Chang J, Zhao L, Zhao X, Elhajj IH, Xi N, Liu L (2018) Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications. Bioinspir Biomim 13(6):066001
Kazerooni H (1988) Human machine interaction via the transfer of power and information signals; part ii: Dynamics and control analysis. In: Proceedings of the AMCE winter annual meeting, pp 163–75. Citeseer
Kazerooni H (1990) Human-robot interaction via the transfer of power and information signals. IEEE Trans Syst, Man, Cybern 20(2):450–463
Xiong C, Jiang X, Sun R, Huang X, Xiong Y (2009) Control methods for exoskeleton rehabilitation robot driven with pneumatic muscles. Ind Robot: Int J 36(3):210–220. https://doi.org/10.1108/01439910910950469
Copaci D, Serrano D, Moreno L, Blanco D (2018) A high-level controlalgorithm based on semg signalling for an elbow joint sma exoskeleton. Sensors 18(8):2522
Behzadipour S, Khajepour A (2006) Stiffness of cable-based parallel manipulators with application to stability analysis
Xu K, Wang Y, Qiu D (2013) Design simulations of the sjtu continuum arm exoskeleton (scax). In: international conference on intelligent robotics and applications, pp 351–362. Springer
Templeman JO, Sheil BB, Sun T (2020) Multi-axis force sensors: a state-of-the-art review. Sens Actuators A: Phys 304:111772
Liu K, Xiong C-H, He L, Chen W-B, Huang X-L (2018) Postural synergy based design of exoskeleton robot replicating human arm reaching movements. Robot Auton Syst 99:84–96
Schiele A, Hirzinger G (2011) A new generation of ergonomic exoskeletons-the high-performance x-arm-2 for space robotics telepresence. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 2158–2165. IEEE
Baltaxe-Admony LB, Robbins AS, Jung EA, Lessard S, Teodorescu M, SunSpiral V, Agogino A (2016) Simulating the human shoulder through active tensegrity structures. In: international design engineering technical conferences and computers and information in engineering conference, vol. 50183, pp 006–09027. American Society of Mechanical Engineers
Li Q, Yang J (2010) Study on the classification of motor unit action potentials from single-channel surface emg signal based on the wavelet analysis. J Biomed Eng 27(4):893–897
Yin YH, Fan YJ, Xu LD (2012) Emg and epp-integrated human–machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Technol Biomed 16(4):542–549
Huang S, Cai S, Li G, Chen Y, Xie L (2019) Variable robot-resistance rehabilitation for upper limb based on an semg-driven model. In: 2019 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 814–818. IEEE
Otsuka T, Kawaguchi K, Kawamoto H, Sankai Y (2011) Development of upper-limb type hal and reaching movement for meal-assistance. In: 2011 IEEE international conference on robotics and biomimetics, pp 883–888. IEEE
Krasin V, Gandhi V, Yang Z, Karamanoglu M (2015) Emg based elbow joint powered exoskeleton for biceps brachii strength augmentation. In: 2015 international joint conference on neural networks (IJCNN), pp 1–6. IEEE
Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC (2011) Proportional emg control for upper-limb powered exoskeletons. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 628–631. IEEE
Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in eeg-based bci. IEEE Trans Biomed Eng 58(6):1865–1873
Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298
McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalo-graphic (eeg) control of three-dimensional movement. J Neural Eng 7(3):036007
Xia B, Maysam O, Veser S, Cao L, Li J, Jia J, Xie H, Birbaumer N (2015) A combination strategy based brain–computer interface for two-dimensional movement control. J Neural Eng 12(4):046021
Bulea TC, Kilicarslan A, Ozdemir R, Paloski WH, ContrerasVidal JL (2013) Simultaneous scalp electroencephalography (eeg), electromyography (emg), and whole-body segmental inertial recording for multi-modal neural decoding. J Vis Exp: JoVE 26(77):e50602
Yang L, Song Y, Ma K, Xie L (2021) Motor imagery eeg decoding method based on a discriminative feature learning strategy. IEEE Trans Neural Syst Rehabil Eng 29:368–379
Khosla A, Khandnor P, Chand T (2020) A comparative analysis of signal processing and classification methods for different applications based on eeg signals. Biocybern Biomed Eng 40(2):649–690
Bai Z, Fong KN, Zhang JJ, Chan J, Ting K (2020) Immediate and long-term effects of bci-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 17:1–20
Cervera MA, Soekadar SR, Ushiba J, Millán JDR, Liu M, Birbaumer N, Garipelli G (2018) Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol 5(5):651–663
Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G (2010) An ssvep bci to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5
Sakurada T, Kawase T, Takano K, Komatsu T, Kansaku K (2013) A bmi-based occupational therapy assist suit: asynchronous control by ssvep. Front Neurosci 7:172
Padfield N, Zabalza J, Zhao H, Masero V, Ren J (2019) Eeg-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors 19(6):1423
Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279
Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, MullerPutz GR (2010) Self-paced operation of an ssvep-based orthosis with and without an imagery-based “brain switch:” a feasibility study towards a hybrid bci. IEEE Trans Neural Syst Rehabil Eng 18(4):409–414
Soekadar S, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza M, Cohen L, Birbaumer N et al (2016) Hybrid eeg/eog-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci Robot 1(1):eaag3296
Gajwani PS, Chhabria SA (2010) Eye motion tracking for wheelchair control. Int J Inf Technol 2(2):185–187
Chang W-D (2019) Electrooculograms for human–computer interaction: a review. Sensors 19(12):2690
Barea R, Boquete L, Mazo M, López E (2002) Wheelchair guidance strategies using eog. J Intell Robot Syst 34(3):279–299
Islam MR, Bai S (2019) Payload estimation using forcemyography sensors for control of upper-body exoskeleton in load carrying assistance
Ravindra V, Castellini C (2014) A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front Neurorobot 8:24
Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W (1999) Abiomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng 7(2):121–129
Lukowicz P, Hanser F, Szubski C, Schobersberger W (2006) Detecting and interpreting muscle activity with wearable force sensors. In: international conference on pervasive computing, pp 101–116. Springer
Amft O, Junker H, Lukowicz P, Troster G, Schuster C (2006) Sensing muscle activities with body-worn sensors. In: international workshop on wearable and implantable body sensor networks (BSN’06), p 4. IEEE
Cho E, Chen R, Merhi L-K, Xiao Z, Pousett B, Menon C (2016) Force myography to control robotic upper extremity prostheses: a feasibility study. Front Bioeng Biotechnol 4:18
Connan M, Ruiz Ramirez E, Vodermayer B, Castellini C (2016) Assessment of a wearable force-and electromyography device and comparison of the related signals for myocontrol. Front Neurorobot 10:17
Godiyal AK, Verma HK, Khanna N, Joshi D (2018) A force myography-based system for gait event detection in overground and ramp walking. IEEE Trans Instrum Meas 67(10):2314–2323
Delva ML, Lajoie K, Khoshnam M, Menon C (2020) Wrist-worn wearables based on force myography: on the significance of user anthropometry. BioMed Eng OnLine 19(1):1–18
Lee BJ, Williams A, Ben-Tzvi P (2018) Intelligent object grasping with sensor fusion for rehabilitation and assistive applications. IEEE Trans Neural Syst Rehabil Eng 26(8):1556–1565
Sadun A, Jalani J, Sukor J (2016) Force sensing resistor (fsr): a brief overview and the low-cost sensor for active compliance control. In: First international workshop on pattern recognition, vol. 10011, p 1001112 (2016). International Society for Optics and Photonics
Aiguo S, Liyue F (2019) Multi-dimensional force sensor for haptic interaction: a review. Virtual Real Intell Hardw 1(2):121–135
Kim J-H (2019) Multi-axis force-torque sensors for measuring zero-moment point in humanoid robots: a review. IEEE Sens J 20(3):1126–1141
He L, Xiong C, Liu K, Huang J, He C, Chen W (2018) Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control. J Bionic Eng 15(2):247–259
Schlagenhauf F, Sreeram S, Singhose W (2018) Comparison of kinect and vicon motion capture of upper-body joint angle tracking. In: 2018 IEEE 14th international conference on control and automation (ICCA), pp 674–679. IEEE
Pasinetti S, Hassan MM, Eberhardt J, Lancini M, Docchio F, Sansoni G (2019) Performance analysis of the pmd camboard picoflexx time-of-flight camera for markerless motion capture applications. IEEE Trans Instrum Meas 68(11):4456–4471
Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images. CVPR 2011:1297–1304
Fankhauser P, Bloesch M, Rodriguez D, Kaestner R, Hutter M, Siegwart R (2015) Kinect v2 for mobile robot navigation: evaluation and modeling. In: 2015 international conference on advanced robotics (ICAR), pp 388–394. IEEE
Nuzzi C, Pasinetti S, Pagani R, Docchio F, Sansoni G (2019) Hand gesture recognition for collaborative workstations: A smart command system prototype. In: international conference on image analysis and processing, pp 332–342 (2019). Springer
Leightley D, McPhee JS, Yap MH (2016) Automated analysis and quantification of human mobility using a depth sensor. IEEE J Biomed Health Inform 21(4):939–948
Theofanidis M, Lioulemes A, Makedon F (20196) A motion and force analysis system for human upper-limb exercises. In: Proceedings of the 9th ACM international conference on pervasive technologies related to assistive environments, pp 1–8
Wade E, Mataric MJ (2009) Design and testing of lightweight inexpensive motion-capture devices with application to clinical gait analysis. In: 2009 3rd international conference on pervasive computing technologies for healthcare, pp 1–7 (2009). IEEE
Yin Z-X, Xu H-M (2018) A wearable rehabilitation game controller usingimu sensor. In: 2018 IEEE international conference on applied system invention (ICASI), pp 1060–1062 (2018). IEEE
Bonnet V, Joukov V, Kulic D, Fraisse P, Ramdani N, Venture G (2016) Monitoring of hip and knee joint angles using a single inertial measurement unit during lower limb rehabilitation. IEEE Sens J 16(6):1557–1564. https://doi.org/10.1109/JSEN.2015.2503765
Wittmann F, Lambercy O, Gonzenbach RR, van Raai MA, Höver R, Held J, Starkey ML, Curt A, Luft A, Gassert R (2015) Assessmentdriven armtherapy at home using an imu-based virtual reality system. In: 2015 IEEE international conference on rehabilitation robotics (ICORR), pp 707–712 (2015). IEEE
Kim W, Beom J, Park C, Koh S, Kim YJ, Kim Y, Chung SG, Kim S (2018) Reliability and validity of attitude and heading reference systemmotion estimation in a novel mirror therapy system. J Med Biol Eng 38(3):370–377
Cuesta-Vargas AI, Galán-Mercant A, Williams JM (2010) The use of inertial sensors system for human motion analysis. Phys Ther Rev 15(6):462–473
Brigante CM, Abbate N, Basile A, Faulisi AC, Sessa S (2011) Towards miniaturization of a mems-based wearable motion capture system. IEEE Trans Ind Electron 58(8):3234–3241
Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A (2015) Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors 15(8):18813–18833
Douoguih WA, Dolce DL, Lincoln AE (2015) Early cocking phase mechanics and upper extremity surgery risk in starting professional baseball pitchers. Orthop J Sports Med 3(4):2325967115581594
Ghanipoor F, Hashemi M, Salarieh H (2020) Toward calibration of low-precision mems imu using a nonlinear model and tukf. IEEE Sens J 20(8):4131–4138
de Villa SG, Mart´ın AJ, Dom´ınguez JJG (2020) Adaptive imu-basedcalibration of the center of joints for movement analysis: One case study. In: 2020 IEEE international symposium on medical measurements and applications (MeMeA), pp 1–6 (2020). IEEE
Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H (2018) Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl 2(3):283–295
Calanca A, Muradore R, Fiorini P (2015) A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans Mechatron 21(2):613–624
Acknowledgments
We thank Mr. Zhaoqi Guo, Mr. Bowen Zheng and Mr. Shuoyu Li for their valuable comments in this manuscript and provide some professional knowledge.
Funding
This work was supported in part by the National Natural Science Foundation of China (Grant No. 52075177), the National Key Research and Development Program of China (Grant Nos. 2021YFB3301400), Research Foundation of Guangdong Province (Grant Nos. 2019A050505001 and 2018KZDXM002), Guangzhou Research Foundation (Grant Nos. 202002030324 and 201903010028), Zhongshan Research Foundation (Grant Nos.2020B2020 and 2021B2022).
Author information
Authors and Affiliations
Contributions
PX mainly summarizes the current key issues in the development of upper extremity exoskeleton system for patients with hemiplegia, put forward the future development trends and hot spots, and drafted the manuscript. DX, JL, JZ, LX assisted in graph analysis and revised the manuscript. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, P., Xia, D., Li, J. et al. Execution and perception of upper limb exoskeleton for stroke patients: a systematic review. Intel Serv Robotics 15, 557–578 (2022). https://doi.org/10.1007/s11370-022-00435-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11370-022-00435-5