Control of bidirectional physical human–robot interaction based on the human intention | Intelligent Service Robotics Skip to main content
Log in

Control of bidirectional physical human–robot interaction based on the human intention

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lam CP, Chou CT, Chiang KH, Fu LC (2011) Human-centered robot navigation—towards a harmoniously human–robot coexisting environment. IEEE Trans Robots 27(1):99–112

  2. Tsai C, Dutoit X, Song K, Van Brussel H, Nuttin M (2010) Robust face tracking control of a mobile robot using self-tuning Kalman filter and echo state network. Asian J Control 12(4):488–509

  3. Leica P, Toibero JM, Roberti F, Carelli R (2015) Switched control to robot–human bilateral interaction for guiding people. J Intell Robot Syst 77(1):73–93

    Article  Google Scholar 

  4. Ulrich I, Borenstein J (2001) The guidecane: applying mobile robot technologies to assist the visually impaired. IEEE Trans Syst Man Cybern Part A Syst Hum 31(2):131–136

    Article  Google Scholar 

  5. Hirata Y, Ojim Y, Kosuge K (2008) Variable motion characteristics control of an object by multiple passive mobile robots in cooperation with a human. In: Proceedings of IEEE international conference on robotics and automation, pp 1346–1351, Pasadena CA, USA

  6. Wang Z, Fukaya K, Hirata Y, Kosuge K (2007) Control of passive mobile robots for object transportation—braking torque analysis and motion control. In: Proceedings of IEEE international conference on robotics and automation, pp 2874–2879, Roma, Italy

  7. Hirata Y, Song H, Wang Z, Kosgue K (2007) Control of passive object handling robot with free joint for reducing human assistive force. In: Proceedings of IEEE/RSL international conference on intelligent robots and systems, pp 1154–1159, San Diego CA, USA

  8. Manuel J, Wandosell H, Graf B (2002) Non-holonomic navigation system of awalking-aid robot. In: Proceedings of IEEE international workshop on robot and human interactive communication, pp 518–523, Berlin, Germany

  9. Hirata Y, Hara A, Kosuge K (2007) Motion control of passive intelligent walker using servo brakes. IEEE Trans Robot 23(5):981–990

    Article  Google Scholar 

  10. Yu H, Spenko M, Dubowsky S (2003) An adaptive shared control system for an intelligent mobility aid for the elderly. Auton Robots 15(1):53–66

    Article  Google Scholar 

  11. Roy N, Baltus G, Fox D, Gemperle F, Goetz J, Hirsch T, Margaritis D (2000) Towards personal service robots for the elderly. In: Proceedings of workshop interactive robotics and entertainment, Pittsburgh PA, USA

  12. Garcia F, Bartolini F, Frizera R (2010) Object transportation task by a human and a mobile robot. IEEE international conference on industrial technology (ICIT), pp 1445–1450

  13. Hirata Y, Ojima Y, Kosuge K (2007) Handling of an object in 3D space by multiple mobile manipulators based on intentional force/moment applied by human. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, pp 1–6, Zürich, Switzerland

  14. Hirata Y, Kume Y, Wang Z, Kosuge K (2003) Decentralized control of multiple mobile manipulators based on virtual 3-D caster motion for handling an object in cooperation with a human. In: Proceedings of IEEE international conference on robotic & automation, Taiwan

  15. Wakita W, Huamg J, Di P, Sekiyama K, Fukuda T (2013) Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans Mechatron 18:285–296

  16. Ferland F, Aumont A, Létourneau D, Michaud F (2013) Taking your robot for a walk: force-guiding a mobile robot using compliant arms. In: Proceedings of ASM/IEEE international conference on human–robot interaction, pp 309–316, Tokyo, Japan

  17. Nagarajan U, Kantor G, Hollis R (2009) Human–robot physical interaction with dynamically stable mobile robots. In: Proceedings of ACM/IEEE international conference on human–robot interaction, pp 281–282, La Jolla CA, USA

  18. Abidi S, Williams M, Johnston B (2013) Human pointing as a robot directive. In: Proceedings of ACM/IEEE international conference on human–robot interaction, pp 67–68, Tokyo, Japan

  19. Chuy O, Hirata Y, Kosuge K (2006) A new control approach for a robotic walking support system in adapting user characteristics. IEEE Trans Syst Man Cybern 36:725–733

    Article  Google Scholar 

  20. Yamada Y, Umetani Y, Daitoh H, Sakai T (1999) Construction of a human/robot coexistence system based on a model of human will-intention and desire. In: Proceedings of IEEE international conference on robotics and automation, pp 2861–2867, Detroit MI, USA

  21. Huang J, Di P, Fukuda T, Matsuno T (2008) Motion control of omnidirectional-type cane robot based on human intention. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 273–278, Nice, France

  22. Garcia D, Slawinsky E, Mut V (2013) Collaborater for a car-like vehicle driven by a user with visual inattention. Asian J Control 15:177–192

    Article  MathSciNet  MATH  Google Scholar 

  23. Mori H, Kotani S (1998) A robotic travel aid for the blind—attention and custom for safe behavior. In: Proceedings of international symposium of robotics research, pp 237–254, Shonan, Japan

  24. Hirata Y, Muraki A, Kosuge K (2006) Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state. In: Proceedings of IEEE international conferences on robotics and automation, pp 3498–3503, Orlando FL, USA

  25. Kosuge K, Hayashi T, Hirata Y, Tobiyama R (2003) Dance partner robot:Ms DanceR. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 3459–3464, LasVegas NV, USA

  26. Takeda T, Hirata Y, Kosuge K (2007) Dance step estimation method based on HMM for dance partner robot. IEEE Trans Ind Electron 54(2):699–706

    Article  Google Scholar 

  27. Secchi H, Carelli R, Mut V (2003) An experience on stable control of mobile robots. Lat Am Appl Res 33(4):379–386

    Google Scholar 

  28. Andaluz V, Roberti F, Toibero JM, Carelli R (2012) Adaptive unified motion control of mobile manipulators. Control Eng Pract 20(12):1337–1352

    Article  Google Scholar 

  29. Andaluz V, Roberti F, Toibero JM, Carelli R, Wagner B (2011) Adaptive dynamic path following control of an unicycle-like mobile robot. In: Proceedings of international conference on intelligent robotics and applications, Aachen, Germany

  30. Kalata P (1984) The tracking index: a generalized parameter for \(\propto \)\({\upbeta }\) and \(\propto \)\({\upbeta }\)\({\upgamma }\) target trackers. IEEE Trans Aerosp Electron Syst 20(2):174–182

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by Universidad Nacional de San Juan (AR), Consejo Nacional de Investigaciones Científicas y Técnicas, Fondo para la Investigación Científica y Tecnológica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Roberti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leica, P., Roberti, F., Monllor, M. et al. Control of bidirectional physical human–robot interaction based on the human intention. Intel Serv Robotics 10, 31–40 (2017). https://doi.org/10.1007/s11370-016-0207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-016-0207-4

Keywords

Navigation