Joint self-representation and subspace learning for unsupervised feature selection | World Wide Web Skip to main content
Log in

Joint self-representation and subspace learning for unsupervised feature selection

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

This paper proposes a novel unsupervised feature selection method by jointing self-representation and subspace learning. In this method, we adopt the idea of self-representation and use all the features to represent each feature. A Frobenius norm regularization is used for feature selection since it can overcome the over-fitting problem. The Locality Preserving Projection (LPP) is used as a regularization term as it can maintain the local adjacent relations between data when performing feature space transformation. Further, a low-rank constraint is also introduced to find the effective low-dimensional structures of the data, which can reduce the redundancy. Experimental results on real-world datasets verify that the proposed method can select the most discriminative features and outperform the state-of-the-art unsupervised feature selection methods in terms of classification accuracy, standard deviation, and coefficient of variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Notes

  1. http://www.csie.nu.edu.tw/cjlin/libsvm/

  2. UCI Repository of Machine Learning Datasets, http://archive.ics.uci.edu

  3. http://featureselection.asu.edu/datasets.php

  4. http://download.csdn.net/download/zh920307/6844115

References

  1. Bermejo, P., Gámez, J.A., Puerta, J.M.: A grasp algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recogn. Lett. 32(5), 701–711 (2011)

    Article  Google Scholar 

  2. Cai, D., He, X., Han, J.: Spectral regression: a unified approach for sparse subspace learning. In: IEEE ICDM, pp. 73–82 (2007)

  3. Cai, D., Zhang, C., He. X.: Unsupervised feature selection for multi-cluster data. In: ACM SIGKDD, pp. 333–342 (2010)

  4. Cai, X., Ding, C., Nie, F., Huang, H.: On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: ACM SIGKDD, pp. 1124–1132 (2013)

  5. Cai, X., Nie, F., Huang, H.: Exact top-k feature selection via l2, 0-norm constraint. In: IJCAI, vol. 13, pp. 1240–1246 (2013)

  6. Chang, X., Nie, F., Yang, Y., Huang, H.: A convex formulation for semi-supervised multi-label feature selection. In: AAAI, pp. 1171–1177 (2014)

  7. Chen, X.-W., Zeng, X., van Alphen, D.: Multi-class feature selection for texture classification. Pattern Recognit. Lett. 27(14), 1685–1691 (2006)

    Article  Google Scholar 

  8. Gottumukkal, R., Asari, V.K.: An improved face recognition technique based on modular pca approach. Pattern Recognit. Lett. 25(4), 429–436 (2004)

    Article  Google Scholar 

  9. Gu, Q., Li, Z., Han, J.: Joint feature selection and subspace learning. In: IJCAI, vol. 22(1), p. 1294

  10. Hall, M. A., Smith, L.A.: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In: FLAIRS, vol. 1999, pp. 235–239 (1999)

  11. He, X, Niyogi, P.: Locality preserving projections. In: NIPS, pp. 153–160 (2004)

  12. Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing 220, 130–137 (2017)

    Article  Google Scholar 

  13. Liu, R., Yang, N., Ding, X., Ma, L.: An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In: IEEE IITA, vol. 3, pp. 65–68 (2009)

  14. Lu, C., Lin, Z., Yan, S.: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. IEEE Trans. Image Process. 24(2), 646–654 (2015)

    Article  MathSciNet  Google Scholar 

  15. Nikitidis, S., Tefas, A., Pitas, I.: Maximum margin projection subspace learning for visual data analysis. IEEE Trans. Image Process. 23(10), 4413–4425 (2014)

    Article  MathSciNet  Google Scholar 

  16. Qian, M, Zhai, C.: Robust unsupervised feature selection. In: IJCAI, pp. 1621–1627 (2013)

  17. Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognit. 35(4), 835–846 (2002)

    Article  Google Scholar 

  18. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognit. Lett. 24(6), 833–849 (2003)

    Article  Google Scholar 

  19. Tabakhi, S., Moradi, P., Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32, 112–123 (2014)

    Article  Google Scholar 

  20. Velu, R., Reinsel, G.C.: Multivariate reduced-rank regression: theory and applications, vol. 136. Springer Science Business Media, New York (2013)

    Google Scholar 

  21. Wang, T., Qin, Z., Zhang, S., Zhang, C.: Cost-sensitive classification with inadequate labeled data. Inf. Syst. 37(5), 508–516 (2012)

    Article  Google Scholar 

  22. Wang, H., Gao, Y., Shi, Y., Wang, R.: Group-based alternating direction method of multipliers for distributed linear classification. In: IEEE transactions on cybernetics. https://doi.org/10.1109/TCYB.2016.2570808, pp. 1–15 (2016)

    Article  Google Scholar 

  23. Wu, J., Long, J., Liu, M.: Evolving rbf neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148, 136–142 (2015)

    Article  Google Scholar 

  24. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  25. Yi, P., Song, A., Guo, J., Wang, R.: Regularization feature selection projection twin support vector machine via exterior penalty. Neural Comput. Appl. 1–15 (2016)

  26. Zhang, S.: Shell-neighbor method and its application in missing data imputation. Appl. Intell. 35(1), 123–133 (2011)

    Article  Google Scholar 

  27. Zhang, S., Jin, Z., Zhu, X.: Missing data imputation by utilizing information within incomplete instances. J. Syst. Softw. 84(3), 452–459 (2011)

    Article  Google Scholar 

  28. Zhang, S., Cheng, D., Zong, M., Gao, L.: Self-representation nearest neighbor search for classification. Neurocomputing 195, 137–142 (2016)

    Article  Google Scholar 

  29. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 8(3), 43 (2017)

    Google Scholar 

  30. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient knn classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 1–12 https://doi.org/10.1109/TNNLS.2017.2673241 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)

    Article  Google Scholar 

  32. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhu, P., Zuo, W., Zhang, L., Hu, Q., Shiu, S.C.: Unsupervised feature selection by regularized self-representation. Pattern Recognit. 48(2), 438–446 (2015)

    Article  Google Scholar 

  34. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)

    Article  Google Scholar 

  35. Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D.: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–618 (2016)

    Article  Google Scholar 

  36. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (6), 1263–1275 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)

    Article  Google Scholar 

  38. Zhu, X., Suk, H., Wang, L., Lee, S., Shen, D.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017)

    Article  Google Scholar 

  39. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the Marsden Fund of New Zealand and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruili Wang.

Additional information

This article belongs to the Topical Collection: Special Issue on Deep Mining Big Social Data

Guest Editors: Xiaofeng Zhu, Gerard Sanroma, Jilian Zhang, and Brent C. Munsell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zong, M. Joint self-representation and subspace learning for unsupervised feature selection. World Wide Web 21, 1745–1758 (2018). https://doi.org/10.1007/s11280-017-0508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-017-0508-3

Keywords

Navigation