Intelligent LSTM (iLSTM)-Security Model for HetIoT | Wireless Personal Communications Skip to main content

Advertisement

Log in

Intelligent LSTM (iLSTM)-Security Model for HetIoT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long short-term memory (LSTM) techniques, i.e., the iLSTM-Security model, for the HetIoT network. The research addressed the steps needed to prepare the data after complete data analysis and feature extraction using the principal component analysis (PCA) method. The research also highlighted the asymptotic time complexity analysis for the proposed iLSTM-Security model. The proposed iLSTM-Security model efficiently identifies and nullifies the different DDoS threats. The research analyzes binary (2 class) and multiclass classification (7 class and 13 class) for optimal DDoS threat detection. The proposed iLSTM-Security model’s efficacy is assessed against two state-of-the-art DL approaches, and the findings show that the proposed iLSTM-Security model surpasses them. The proposed iLSTM-Security model effectively recognizes different DDoS threats with an accuracy rate of 99.98% for 2 classes, 98.8% for 7 classes, and 99.97% for 13 class classifications. Additionally, the research assesses the individual accuracy of 7 classes and 13 classes with state-of-the-artwork. Further, the research reveals that the proposed iLSTM-Security model is lighter, simpler, and considerably less complicated than the existing state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 1
Fig. 10
Algorithm 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

Not Applicable

References

  1. Mahadik Shalaka S., Pranav M. Pawar, & Muthalagu, Raja. (2023). Edge-HetIoT Defense against DDoS attack using Learning Techniques, Computers & Security, Elsevier, pp.103347

  2. Mahadik, S. S., Pawar, P. M., & Muthalagu, R. (2023). Heterogeneous IoT (HetIoT) security: techniques, challenges, and open issues (pp. 1–42). Springer: Multimedia Tools and Applications.

    Google Scholar 

  3. Qiu, T., Chen, N., Li, K., Atiquzzaman, M., & Zhao, W. (2018). How Can Heterogeneous Internet of Things build our Future A survey. IEEE Communications Surveys & Tutorials, 20(3), 2011–2027.

    Article  Google Scholar 

  4. Mahadik, S., Pawar, P. M., & Muthalagu, R. (2023). Efficient Intelligent Intrusion Detection System for Heterogeneous Internet of Things (HetIoT). J Netw Syst Manage, Springer, 31, 2. https://doi.org/10.1007/s10922-022-09697-x

    Article  Google Scholar 

  5. Harbi, Y., Aliouat, Z., Harous, S., Bentaleb, A., & Refoufi, A. (2019). A review of security in internet of things. Wireless Personal Communications, Springer, 108, 325–344.

    Article  Google Scholar 

  6. SCOTT IKEDA, IoT-Based DDoS Attacks Are Growing and Making Use of Common Vulnerabilities [Online]. Available: https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/. [Accessed: 25-Mar-2020].

  7. Gasmi, R., Hammoudi, S., Lamri, M., & Harous, S. (2023). Recent Reinforcement Learning and Blockchain Based Security Solutions for Internet of Things: Survey. Wireless Personal Communications, 132(2), 1307–1345.

    Article  Google Scholar 

  8. Cloudfare-Famous DDoS attack [Online]. Available: https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/.

  9. DDoS Statistical Report [Online]. Available: https://blog.nexusguard.com/threat-report/ddos-statistical-report-for-1hy-2022. [Accessed: 05-Dec-2022].

  10. DDoS 2.0 [Online]. Available: https://thehackernews.com/2023/09/ddos-20-iot-sparks-new-ddos-alert.html. [Accessed: 15-Sep-2023].

  11. Cicsco DDoS Annual Report (white paper) [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. [Accessed: 9-MAR-2020].

  12. Mahadik, S. S., Pawar, P. M., Muthalagu, R., Prasad, N. R., & Mantri, D. (2022). Smart LSTM-based IDS for Heterogeneous IoT (HetIoT), In 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC), Herning, Denmark, pp. 23-28. https://doi.org/10.1109/WPMC55625.2022.10014866.

  13. Badamasi, U. M., Khaliq, S., Babalola, O., et al. (2020). A Deep Learning based approach for DDoS attack Detection in IoT-enabled Smart environments’’, International Journal of Computer Networks and Commu. Security, 8(10), 93–99.

    Google Scholar 

  14. Amaizu, G. C., Nwakanma, C. I., Bhardwaj, S., et al. (2021). Composite and Efficient DDoS attack Detection framework for B5G networks’’. Computer Networks, Elsevier, 188(107), 871.

    Google Scholar 

  15. Javeed, D., Gao, T., & Khan, M. T. (2021). SDN-enabled Hybrid DL-driven framework for the Detection of Emerging Cyber Threats in IoT’’. Electronics, MDPI, 10(8), 918.

    Google Scholar 

  16. Ferrag M.A., Shu L., Djallel H., & Choo K.-K.R. (2021). Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0”, Electronics, MDPI, vol. 10, pp.1257–1283. https://doi.org/10.3390/electronics10111257.

  17. Jia, Y., Zhong, F., Alrawais, A., et al. (2020). Flowguard: An intelligent Edge Defense Mechanism against IoT DDoS attacks’’. IEEE Internet of Things Journal, IEEE, 7(10), 9552–9562.

    Article  Google Scholar 

  18. Novaes, M. P., Carvalho, L. F., Lloret, J., & Proença, M. L. (2020). Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment. IEEE Access, 8, 83765–83781. https://doi.org/10.1109/ACCESS.2020.2992044

    Article  Google Scholar 

  19. Laghrissi, F., Douzi, S., Douzi, K., et al. (2021). Intrusion Detection Systems using Long Short-Term Memory (LSTM)’’. Journal of Big Data, Springer, 8, 65. https://doi.org/10.1186/s40537-021-00448-4

    Article  Google Scholar 

  20. Rohith Gandhi, A Look at Gradient Descent and RMSprop Optimizers [Online]. Available: https://towardsdatascience.com/a-look-at-gradientdescent-and-rmsprop-optimizers-f77d483ef08b. [Accessed: 05-Nov-2019].

  21. Hossain, M. D., Ochiai, H., Fall, D., & Kadobayashi, Y. (2020). LSTM-based Network Attack Detection: Performance Comparison by Hyper-parameter Values Tuning”, In 2020 7th IEEE International Conf. on Cyber Security and Cloud Computing (CSCloud), pp.62–69 https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00020.

  22. Gaur, V., & Kumar, R. (2021). Analysis of Machine Learning Classifiers for Early Detection of DDoS Attacks on IoT Devices’’ (pp. 1–22). Springer: Arabian Journal for Science and Engineering.

    Google Scholar 

  23. Sharafaldin I, Lashkari AH, Hakak S, et al, Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy”, In: 2019 International Carnahan Conf. on Security Technology (ICCST), IEEE, pp.1–8, (2019).

  24. CICDDoS2019 Dataset [Online]. Available: https://www.unb.ca/cic/datasets/ddos-2019.html. [Accessed: 2019].

  25. Gojic, J., & Radakovic, D. (2022). Proposal of security architecture in 5G mobile network with DDoS attack detection, In 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split / Bol, Croatia, pp. 1-5. https://doi.org/10.23919/SpliTech55088.2022.9854338.

  26. Elsayed, M. S., Le Khac, N. A., Dev, S. & Jurcut, A. D. (2020). DDoSnet A Deeplearning Model for Detecting Network Attacks”, In: 21st International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE, pp.391–396.

  27. Meenakshi, K. Kumar & Behal, S. (2021). Distributed Denial of Service Attack Detection using Deep Learning Approaches ”, In 2021 8th International Conf. on Computing for Sustainable Global Development (INDIACom), IEEE, pp. 491–495

  28. Boonchai, J., Kitchat, K., & Nonsiri, S. (2022). The classification of DDoS attacks using deep learning techniques, In 2022 7th International Conference on Business and Industrial Research, IEEE, pp. 544-550.

  29. Saranya, N., Geetha, K., & Rajan, C. (2020). Data Replication in Mobile Edge Computing Systems to Reduce Latency in the Internet of Things. Wireless Pers Commun, 112, 2643–2662. https://doi.org/10.1007/s11277-020-07168-7

    Article  Google Scholar 

  30. Prasad Patil, Exploratory Data Analysis (EDA) [Online]. Available: https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15/. [Accessed: 23-MAR-2018].

  31. Wei, Y., Jang-Jaccard, J., Sabrina, F., Singh, A., Xu, W., & Camtepe, S. (2021). AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification. IEEE Access, 9, 146810–146821. https://doi.org/10.1109/ACCESS.2021.3123791

    Article  Google Scholar 

  32. NTP amplification Attack [Online]. Available: https://www.imperva.com/learn/ddos/ntp-amplification/, [Accessed: 02-Jan-2023].

  33. TFTP Attack [Online]. Available: https://securityintelligence.com/news/trivial-file-transfer-protocol-used-in-new-ddos-attack/, [Accessed: 07-Jan-2016].

  34. MSSQL Reflection Attack [Online]. Available: https://ddos-guard.net/en/terminology/attack-type/ms-sql-reflection-attack, [Accessed: 02-Jan-2023].

  35. SSDP DDoS Attack [Online]. Available: https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/, [Accessed: 02-Jan-2023].

  36. SNMP Reflection Attack [Online]. Available: https://www.imperva.com/learn/ddos/snmp-reflection/, [Accessed: 02-Jan-2023].

  37. DNS Attack [Online]. Available: https://www.imperva.com/learn/application-security/dns-hijacking-redirection/, [Accessed: 02-Jan-2023].

  38. Jeff Hale, Normalize with Scikit-Learn [Online]. Available: https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02, [Accessed: 4-Mar-2019].

  39. Aditya Sharma, Principal Component Analysis (PCA) [Online]. Available: https://www.datacamp.com/tutorial/principal-component-analysis-in-python, [Accessed: 1-Jan-2020].

  40. Jason Brownlee, Hyperparameter Optimization With Random Search and Grid Search [Online]. Available: https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/, [Accessed: 19-Sep-2020].

  41. Divyang Goswami, Comparison of Sigmoid, Tanh and ReLU Activation Functions [Online]. Available: https://www.aitude.com/comparison-of-sigmoid-tanh-and-relu-activation-functions/, [Accessed: 19-Aug-2020].

  42. Devrim Akgun, Selman Hizal, Unal Cavusoglu, A new DDoS attacks Intrusion Detection Model based on Deep Learning for Cybersecurity”, Computers & Security, Elsevier, Vol.118, pp.102748, (2022), ISSN 0167-4048, https://doi.org/10.1016/j.cose.2022.102748.

  43. Christian Versloot, How-to-use-sparse-categorical-crossentropy-in-keras [Online]. Available: https://github.com/christianversloot/machine-learning-papers/blob/main/how-to-use-sparse-categorical-crossentropy-in-keras.md, [Accessed: 01-Feb-2020].

  44. Vitaly Bushaev, Understanding RMSProp [Online]. Available: https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a, [Accessed: 02-Sept-2018].

  45. Time complexity for LSTM [Online]. Available: https://ai.stackexchange.com/questions/33927/what-is-the-time-complexity-for-testing-a-stacked-lstm-model, [Accessed: 02-Dec-2022].

  46. Murat Karakaya, LSTM-Understanding the Number of Parameters [Online]. Available: https://www.kaggle.com/code/kmkarakaya/lstm-understanding-the-number-of-parameters, [Accessed: 12-Dec-2022].

  47. Aydın, H., Orman, Z., & Aydın, M. A. (2022). A long short-term memory (LSTM)-based distributed denial of service (DDoS) detection and defense system design in public cloud network environment. Computers & Security, 118, 102725.

    Article  Google Scholar 

Download references

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable

Corresponding author

Correspondence to Pranav M. Pawar.

Ethics declarations

Conflict of interest/Conflict of interest

Not Applicable

Ethics approval

Not Applicable

Consent to participate

Not Applicable

Consent for publication

Not Applicable

Code availability

Not Applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadik, S.S., Pawar, P.M., Muthalagu, R. et al. Intelligent LSTM (iLSTM)-Security Model for HetIoT. Wireless Pers Commun 133, 323–350 (2023). https://doi.org/10.1007/s11277-023-10769-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10769-7

Keywords

Navigation