On Developing Framework for Schedulable Priority-Driven Systems: A Futuristic Review | Wireless Personal Communications
Skip to main content

On Developing Framework for Schedulable Priority-Driven Systems: A Futuristic Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Over time, systems’ real-time data access requirements evolved, e.g., Real-Time Systems and Real-Time Database Systems and their variants. Assigning priorities to tasks/transactions in such a system has always been a critical decision as it forms a basis for allocating the limited number of shared resources optimally. This survey article studies the resource scheduling mechanisms of such systems. For resource scheduling, a priority is assigned to the smallest execution unit of the application, depending on the underlying scenario. The already existing resource scheduling algorithms are compared to make future recommendations – further exploration of all such unresolved open priority assignment policy-related problems is critical. Finally, we identify some new target technologies where one could foresee the future possibility of integrating custom-designed priority assignment policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This research work utilizes no data or dataset.

Code Availability

Since the article is of survey type, coding the already existing idea was not of our interest. However, an attempt is made to ensure that all the articles surveyed are from authentic sources with pointers to code repositories. The past research articles are assumed to be correct regarding conclusions drawn and the results presented.

References

  1. Xu, J., & Parnas, D. L. (2000). Priority scheduling versus pre-run-time scheduling. Real-time systems, 18(1), 7–23

    Article  Google Scholar 

  2. Kao, B., & Garcia-Molina, H. (1993). An overview of real-time database systems. Real Time Computing, 127, 261–282

    Article  Google Scholar 

  3. Shanker, U., Misra, M., & Sarje, A. K. (2008). Distributed real time database systems: Background and literature review. International Journal of Distributed and Parallel Databases, Springer Verlag, vol. 23, no. 02, pp. 127–149

  4. Lam, K., & Kuo, T. (2002). Mobile distributed real-time database systems. Real-Time Database Systems (pp. 245–258). Boston, MA: Springer

    Chapter  Google Scholar 

  5. Arun, A., Pandey, S., & Shanker, U. (2021). A Multi-Replica-Centered Commit Protocol for Distributed Real-Time and Embedded Applications. International Journal of System Dynamics Applications (IJSDA), 10(4), 1–19

    Article  Google Scholar 

  6. Pandey, S., & Shanker, U. (2020). Transaction Scheduling Protocols For Controlling Priority Inversion: A Review. Computer Science Review, 35, 100215

    Article  MathSciNet  MATH  Google Scholar 

  7. Minker, J. (2014). Foundations of deductive databases and logic programming. Morgan Kaufmann

  8. Pandey, S., & Shanker, U. (2021). Performance Issues in Scheduling of Real Time Transactions. Proceedings of the 26th International Conference on Database System for Advance Applications (DASFAA-2021), Taipei, Taiwan

  9. Buyya, R., Broberg, J., & Goscinski, A. M. (2010). Cloud computing: Principles and paradigms (87 vol.). John Wiley & Sons

  10. Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data, pp. 37–42

  11. Davis, R. I., Cucu-Grosjean, L., Bertogna, M., & Burns, A. (2016). A review of priority assignment in real-time systems. Journal of systems architecture, 65, 64–82

    Article  Google Scholar 

  12. Fineberg, M. S., & Serlin, O. (1967). Multiprogramming for hybrid computation. In Proceedings of fall joint computer conference, pp. 1–13, November 14–16

  13. Choi, S., & Agrawala, A. (1998). Scheduling aperiodic and sporadic tasks in hard real-time systems.

  14. Jeffay, K., Stanat, D., & Martel, C. (1991). On non-preemptive scheduling of periodic and sporadic tasks. In IEEE real-time systems symposium, pp. 129–139

  15. Isovic, D., & Fohler, G. (2000). Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex constraints. In Proceedings 21st IEEE Real-Time Systems Symposium, pp. 207–216

  16. Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM (JACM), 20(1), 46–61

    Article  MathSciNet  MATH  Google Scholar 

  17. Leung, J. Y. T., & Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic, real-time tasks. Performance evaluation, 2(4), 237–250

    Article  MathSciNet  MATH  Google Scholar 

  18. Goossens, J., & Devillers, R. (1997). The non-optimality of the monotonic priority assignments for hard real-time offset free systems. Real-Time Systems, 13(2), 107–126

    Article  Google Scholar 

  19. Lehoczky, J. P. (1990). Fixed priority scheduling of periodic task sets with arbitrary deadlines. Proceedings 11th IEEE Real-Time Systems Symposium, pp. 201–209

  20. George, L., Rivierre, N., & Spuri, M. (1996). Preemptive and non-preemptive real-time uniprocessor scheduling. Doctoral dissertation, Inria

  21. Swaroop, V., & Shanker, U. (2010). Mobile distributed real time database systems: A research challenges. IEEE International Conference on Computer and Communication Technology (ICCCT), pp. 421–424

  22. Warren, W. (2022). 9 Attributes of Live Real Time Databases [Online]. Available: https://raima.com/live-real-time-databases/

  23. Oracle Database Lite Documentation Library. (2010). [Online]. Available: https://docs.oracle.com/cd/E12095_01/index.htm

  24. Kim, Y., & Son, S. (1995). Predictability and consistency in real-time database systems. Advances in real-time systems, pp.509–531

  25. Baruah, S. (2019). Mixed-Criticality Uniprocessor Scheduling. In Y. C. Tian, & D. Levy (Eds.), Handbook of Real-Time Computing. Singapore: Springer

    Google Scholar 

  26. Yu, P. S., Wu, K., Lin, K., & Son, S. H. (1994). On Real-Time Databases: Concurrency Control and Scheduling. Proceedings of the IEEE, vol. 82, no. 01, pp. 140–157

  27. Haritsa, J., Livny, M., & Carey, M. (1991). Earliest deadline scheduling for real-time database systems. Proceedings Twelfth IEEE Real-Time Systems Symposium, pp. 232–242

  28. Pang, H., Livny, M., & Carey, M. J. (1992). Transaction Scheduling in Multiclass Real-Time Database Systems. Proceedings of IEEE Real-Time Systems Symposium (RTSS), p. 23–34

  29. Datta, A., Mukherjee, S., Konana, P., Viguier, I., & Bajaj, A. (1996). Multiclass transaction scheduling and overload management in firm real-time database systems. Inf Syst, 21(1), 29–54

    Article  Google Scholar 

  30. Dogdu, E. (2006). Utilization of execution histories in scheduling real-time database transactions. Data & Knowledge Engineering, 57(2), 148–178

    Article  Google Scholar 

  31. Semghouni, S., Amanton, L., Sadeg, B., & Berred, A. (2007). On new scheduling policy for the improvement of firm RTDBSs performances. Data & Knowledge Engineering, 63(2), 414–432

    Article  Google Scholar 

  32. Kaddes, M., Amanton, L., Berred, A., Sadeg, B., & Abdouli, M. (2013). Enhancement of Generalized Earliest Deadline First Policy. In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS), pp. 231–238

  33. Kaddes, M., Abdouli, M., Amanton, L., Sadeg, B., Berred, A., & Bouaziz, R. (2020). A probabilistic analysis of transactions success ratio in real-time databases. International Journal of Computer Aided Engineering and Technology, 12(4), 405–422

    Article  Google Scholar 

  34. Hong, D., Johnson, T., & Chakravarthy, S. (1993). Real-time transaction scheduling: a cost conscious approach. ACM SIGMOD Record 22(2), 197–206

  35. Shanker, U., Misra, M., & Sarje, A. (2006). Some performance issues in distributed real-time database systems. Proc. VLDB Ph.D. Work,Conv. Exhib. Cent. (COEX), Seoul, Korea

  36. Shanker, U. (2008). Some Performance Issues in Distributed Real Time Database Systems. PhD Thesis. Indian Institute of Technology Roorkee

  37. Pandey, S., & Shanker, U. (2018). Priority Inversion in DRTDBS: Challenges and Resolutions. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data (CoDS-COMAD ‘18), pp. 305–309

  38. Pandey, S. (2020). Resolving Conflicts amongst Distributed Real Time Transactions, PhD Thesis, Dept. of CSE, M. M. M. University of Technology, Gorakhpur-273010, 2016-20, June 12.

  39. Kao, B., & Garcia-Molina, H. (1997). Deadline assignment in a distributed soft real-time system. IEEE transactions on parallel and distributed systems, 8(12), 1268–1274

    Article  Google Scholar 

  40. Lee, V., Lam, K., & Kao, B. (1999). Priority scheduling of transactions in distributed real-time databases. Real-Time Systems, 16(1), 31–62

    Article  Google Scholar 

  41. Shanker, U., Misra, M., & Sarje, A. K. (2005). Priority assignment heuristic to cohorts executing in parallel. Proceedings of the 9th WSEAS International Conference on Computers, World Scientific and Engineering Academy and Society (WSEAS), pp. 01–06

  42. Shanker, U., Misra, M., & Sarje, A. K. (2005). Priority Assignment Heuristic and Issue of Fairness to Cohorts Executing in Parallel. WSEAS Transactions on COMPUTERS, 4(7), 758–768

    Google Scholar 

  43. Chen, H. R., Chin, Y. H., & Tseng, S. M. (2001). Scheduling value-based transactions in distributed real-time database systems. In Internationa Parallel and Distributed Processing Symposium. IEEE Computer Society., vol. 1, pp. 978–979

  44. Pandey, S., & Shanker, U. (2020). MDTF: A Most Dependent Transactions First Priority Assignment Heuristic. In Mehdi Khosrow-Pour, Ed., Encyclopedia of Organizational Knowledge, Administration, and Technologies (1st ed., pp. 742–756). IGI Global

  45. Pandey, S., & Shanker, U. (2020). A contention aware EQS priority assignment heuristic for cohorts in DRTDBS. .The Journal of Supercomputing 77(7), 6629-6663

  46. Lam, K., Kuo, T., Tsang, W., & Law, G. (2000). Concurrency control in mobile distributed real-time database systems. Information Systems, 25(4), 261–286

    Article  Google Scholar 

  47. Lee, V. C., Lam, K. W., & Kuo, T. W. (2004). Efficient validation of mobile transactions in wireless environments. Journal of Systems and Software, 69, 1–2

    Article  Google Scholar 

  48. Lei, X., Zhao, Y., Chen, S., & Yuan, X. (2009). Concurrency control in mobile distributed real-time database systems. Journal of Parallel and Distributed Computing, 69(10), 866–876

    Article  Google Scholar 

  49. Singh, P. K., & Shanker, U. (2017). Priority Heuristic in Mobile Distributed Real Time Database Using Optimistic Concurrency Control. 23RD IEEE Annual International Conference in Advanced Computing and Communications (ADCOM), Bangalore, India, pp. 44–49

  50. Singh, P. K., & Shanker, U. (2018). A New Priority Heuristic Suitable in Mobile Distributed Real Time Database System. In International Conference on Distributed Computing and Internet Technology. Springer. pp. 330–335

  51. Singh, P. K., & Shanker, U. (2018). A priority heuristic policy in mobile distributed real-time database system. Advances in data and information sciences (pp. 211–221). Singapore: Springer

    Chapter  Google Scholar 

  52. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58

    Article  Google Scholar 

  53. Grossman, R. L. (2009). The case for cloud computing. IT professional, 11(2), 23–27

    Article  Google Scholar 

  54. Wu, M. Y., & Gajski, D. D. (1990). Hypertool: A programming aid for message-passing systems. IEEE transactions on parallel and distributed systems, 1(3), 330–343

    Article  Google Scholar 

  55. Kwok, Y. K., & Ahmad, I. (1996). Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors. IEEE transactions on parallel and distributed systems, 7(5), 506–521

    Article  Google Scholar 

  56. Sih, G. C., & Lee, E. A. (1993). A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE transactions on Parallel and Distributed systems, 4(2), 175–187

    Article  Google Scholar 

  57. El-Rewini, H., & Lewis, T. G. (1990). Scheduling parallel program tasks onto arbitrary target machines. Journal of parallel and Distributed Computing, 9(2), 138–153

    Article  MATH  Google Scholar 

  58. Kruatrachue, B., & Lewis, T. (1988). Grain size determination for parallel processing. IEEE software, 5(1), 23–32

    Article  Google Scholar 

  59. Hwang, J. J., Chow, Y. C., Anger, F. D., & Lee, C. Y. (1989). Scheduling precedence graphs in systems with interprocessor communication times. SIAM Journal on Computing, 18(2), 244–257

    Article  MathSciNet  MATH  Google Scholar 

  60. Kim, S. J. (1988). A general approach to mapping of parallel computations upon multiprocessor architectures. In Proc. International Conference on Parallel Processing. IEEE Computer Society, vol. 3

  61. Yang, T., & Gerasoulis, A. (1994). Scheduling parallel tasks on an unbounded number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9), 951–967

    Article  Google Scholar 

  62. Liou, J. C., & Palis, M. A. (1996). An efficient task clustering heuristic for scheduling dags on multiprocessors. In Workshop on resource management, symposium on parallel and distributed processing, pp. 152–156

  63. Ahmad, I., & Kwok, Y. (1994). A new approach to scheduling parallel programs using task duplication. In IEEE Internatonal Conference on Parallel Processing, vol. 2, pp. 47–51

  64. Hou, E. S., Ansari, N., & Ren, H. (1994). A genetic algorithm for multiprocessor scheduling. IEEE Transactions on Parallel and Distributed systems, 5(2), 113–120

    Article  Google Scholar 

  65. Correa, R. C., Ferreira, A., & Rebreyend, P. (1996). Integrating list heuristics into genetic algorithms for multiprocessor scheduling. In Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing, pp. 462–469

  66. Braun, T. D., Siegal, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I., Robertson, J., Theys, M., Yao, B., Hensgen, D., & Freund, R. (1999). A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems. In IEEE Proceedings of the Eighth Heterogeneous Computing Workshop, pp. 15–29

  67. Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE transactions on parallel and distributed systems, 13(3), 260–274

    Article  Google Scholar 

  68. Baskiyar, S., & Dickinson, C. (2005). Scheduling directed a-cyclic task graphs on a bounded set of heterogeneous processors using task duplication. Journal of Parallel and Distributed Computing, 65(8), 911–921

    Article  MATH  Google Scholar 

  69. Daoud, M. I., & Kharma, N. (2008). A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. Journal of Parallel and distributed computing, 68(4), 399–409

    Article  MATH  Google Scholar 

  70. Lee, Y. C., & Zomaya, A. Y. (2011). Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1374–1381

    Article  Google Scholar 

  71. Li, Z., Ge, J., Hu, H., Song, W. H. H., & Luo, B. (2015). Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE Transactions on Services Computing, 11(4), 713–726

    Article  Google Scholar 

  72. Samadi, Y., Zbakh, M., & Tadonki, C. (2018). E-HEFT: enhancement heterogeneous earliest finish time algorithm for task scheduling based on load balancing in cloud computing. In IEEE International Conference on High Performance Computing & Simulation, pp. 601–609

  73. Dubey, K., Kumar, M., & Sharma, S. C. (2018). Modified HEFT algorithm for task scheduling in cloud environment. Procedia Computer Science, 125, 725–732

    Article  Google Scholar 

  74. Zhou, J., Zhang, M., Sun, J., Wang, T., Zhou, X., & Hu, S. (2020). Drheft: Deadline-constrained reliability-aware heft algorithm for real-time heterogeneous mpsoc systems. IEEE Transactions on Reliability, 71(1), 178-189

  75. Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Information Sciences, 270, 255–287

    Article  MathSciNet  MATH  Google Scholar 

  76. Abdelkader, D. M., & Omara, F. (2012). Dynamic task scheduling algorithm with load balancing for heterogeneous computing system. Egyptian Informatics Journal, 13(2), 135–145

    Article  Google Scholar 

  77. Kumar, M., Sharma, S. C., Goel, A., & Singh, S. P. (2019). A comprehensive survey for scheduling techniques in cloud computing. Journal of Network and Computer Applications, 143, 1–33

    Article  Google Scholar 

  78. Maurya, A., & Tripathi, A. (2018). On benchmarking task scheduling algorithms for heterogeneous computing systems. The Journal of Supercomputing, 74(7), 3039–3070

    Article  Google Scholar 

Download references

Funding

The financial support from Banaras Hindu University (BHU), India, under IoE Grant is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Pandey.

Ethics declarations

Following declarations are made to ensure transparency.

Conflict of Interest

The authors of this paper have no conflict of interest regarding the publication of this research article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Shanker, U. On Developing Framework for Schedulable Priority-Driven Systems: A Futuristic Review. Wireless Pers Commun 128, 2983–3001 (2023). https://doi.org/10.1007/s11277-022-10082-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10082-9

Keywords