A Rotational Planar Circular Split Ring Resonator Sensor for Angle Rotation Detection Applications | Wireless Personal Communications Skip to main content
Log in

A Rotational Planar Circular Split Ring Resonator Sensor for Angle Rotation Detection Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper introduces a planar circular split ring resonator (CSRR) coupled to microstrip transmission line (TL) for rotation angle sensing applications. For each rotation angle, the CSRR acts as a stop-band filter that absorbs the signal flow through the TL. The CSRR sensor introduces a resonance frequency at 4.13 GHz with a − 10 dB bandwidth of 370 MHz. High attenuation coefficient of 40 dB is achieved with reflection magnitude of 0.17 dB. A parametric study on the effect of each CSRR design parameters on the performance of the sensor is introduced. Mathematical modelling of the variations of resonant frequency with different design parameters are derived and verified. The performance of the proposed sensor for rotation angle detection is investigated. A five-elements equivalent circuit model is prepared to represent the inductive and capacitive coupling of the CSRR and TL. The sensing behaviour of the CSRR sensor placed on object with different materials is introduced. The particle swarm optimization (PSO) is employed to find the optimal values of the equivalent circuit elements at different rotation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, Z. N., Liu, D., Nakano, H., Qing, X., & Zwick, T. (2016). Handbook of antenna technologies. Springer Publishing Company.

    Book  Google Scholar 

  2. Bernhard, J. T., & Balanis, C. (2007). Reconfigurable antennas, Synthesis lectures on antennas and propagation series. Morgan & Claypool Publishers.

    Google Scholar 

  3. Qiao, Q. L., Zhang, L., Yang, F., Yue, Z., & Elsherbeni, A. Z. (2013). Reconfigurable sensing antenna with novel HDPE-BST mateiral for temperature monitoring. IEEE Antenna Wireless Propagation Letters, 12, 1420–1423.

    Article  Google Scholar 

  4. El-Refaay, E. A., Malhat, H. A., & Zainud-Deen, S. H. (2019). Thermally tuneable terahertz InSb Patch microstrip antenna. In 36th National radio science conference (NRSC), Egypt, B7.

  5. El-Refaay, E. A., Malhat, H. A., & Zainud-Deen, S. H. (2019). Reconfigurable graphene gas sensor using plasmonic crescent dipole antenna. In International Japan Africa conference communication, and application (JAC-ECC), Egypt, B60.

  6. Naqui, J., & Martín, F. (2013). Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4700–4713.

    Article  Google Scholar 

  7. Herrojo, C., Mata-Contreras, J., Paredes, F., & Martín, F. (2017). Microwave encoders for chipless RFID and angular velocity sensors based on S-shaped split ring resonators. IEEE Sensors Journal, 17(15), 4805–4813.

    Article  Google Scholar 

  8. Sipal, V., Narbudowicz, A. Z., & Ammann, M. J. (2015). Contactless measurement of angular velocity using circularly polarized antennas. IEEE Sensors Journal, 15(6), 3459–3466.

    Article  Google Scholar 

  9. Horestani, A., Fumeaux, C., Al-Sarawi, S., & Abbott, D. (2013). Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sensors Journal, 13(4), 1153–1160.

    Article  Google Scholar 

  10. Maleki Gargari, A., et al. (2018). A wireless metamaterial-inspired passive rotation sensor with submilliradian resolution. IEEE Sensors Journal, 18(11), 4482–4490.

    Article  Google Scholar 

  11. Mata-Contreras, J., Herrojo, C., & Martín, F. (2017). Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4450–4460.

    Article  Google Scholar 

  12. Dong, K., Yang, F., Xu, S., & Li, M. (2018). Reconfigurable sensing antenna for mechanical rotation monitoring.

  13. Jha, A. K., Delmonte, N., Lamecki, A., Mrozowski, M., & Bozzi, M. (2019). Design of microwave-based angular displacement sensor. IEEE Microwave and Wireless Components Letters, 29(4), 306–308.

    Article  Google Scholar 

  14. Davidson, D. B. (2010). Computational electromagnetics for RF and microwave engineering. Cambridge University Press.

    Book  Google Scholar 

  15. El-Refaay, E. A., Zainud-Deen, S. H., & Malhat, H. A. (2020). Angular displacement sensor based on planar circular split ring resonator. In 37th National radio science conference (NRSC), B6 (pp. 1–8). Mansoura, Egypt.

  16. Badawy, M. M., Malhat, H. A., Zainud-Deen, S. H., & Awadalla, K. H. (2015). A simple equivalent circuit model for plasma dipole antenna. IEEE Transactions on Plasma Science, 43(12), 4092–4098.

    Article  Google Scholar 

  17. Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.

    Article  Google Scholar 

  18. Malhat, H. A., & Zainud-Deen, S. H. (2015). Equivalent circuit with frequency-independent lumped elements for plasmonic graphene patch antenna using particle swarm optimization technique. Wireless Personal Communications, 85(4), 1851–1867.

    Article  Google Scholar 

Download references

Funding

There is No funds, grants, or other support was received to conduit this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contribute equally in this paper.

Corresponding author

Correspondence to Hend A. Malhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Malhat, H.A. & El-Refaay, E.A. A Rotational Planar Circular Split Ring Resonator Sensor for Angle Rotation Detection Applications. Wireless Pers Commun 124, 2579–2591 (2022). https://doi.org/10.1007/s11277-022-09479-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09479-3

Keywords

Navigation