A Review on Precision Agriculture Using Wireless Sensor Networks Incorporating Energy Forecast Techniques | Wireless Personal Communications Skip to main content

Advertisement

Log in

A Review on Precision Agriculture Using Wireless Sensor Networks Incorporating Energy Forecast Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are prominently used for environment monitoring, however, energy constraints limit their applications. So, the energy consumption need to be optimized and also an attempt should be made to harvest energy from natural resources. Most of the WSNs depend on solar irradiations for energy harvesting. Unfortunately, the energy harvested from solar radiations is intermittent and highly dependent on weather conditions. To make the systems more energy efficient, energy prediction is essential so that the sensor nodes can schedule tasks accordingly to best suit energy level of battery. This review outlines the various energy prediction techniques, the clustering and routing selection methods and compares earlier research works on agriculture based WSNs. An attempt is made to find the best method for energy prediction and optimum task scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kiani, F., & Seyyedabbasi, A. (2018). Wireless sensor network and internet of things in precision agriculture. International Journal of Advanced Computer Science and Applications,9(8), 220–226.

    Google Scholar 

  2. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture,36(2-3), 113–132.

    Google Scholar 

  3. Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of wireless sensor networks for greenhouse parameter control in precision agriculture. International Journal of Wireless and Mobile Networks (IJWMN),3(1), 140–149.

    Google Scholar 

  4. Bouguera, T., Diouris, J.-F., Andrieux, G., Chaillout, J.-J., & Jaouadi, R. (2018). A novel solar energy predictor for communicating sensors. IET Communications,12(17), 2145–2149.

    Google Scholar 

  5. Gangurde, P., & Bhende, M. (2015). A review on precision agriculture using wireless sensor networks. International Journal of Engineering Trends and Technology,23, 426–431.

    Google Scholar 

  6. Alzahrani, A., Kimball, J. W., & Dagli, C. (2014). Predicting solar irradiance using time series neural networks. Procedia Computer Science,36, 623–628.

    Google Scholar 

  7. Khan, R., Ali, I., Zakarya, M., Ahmad, M., Imran, M., & Shoaib, M. (2018). Technology-assisted decision support system for efficient water utilization: A real-time testbed for irrigation using wireless sensor networks. IEEE Access,6, 25686–25697.

    Google Scholar 

  8. Xu, K., Sheng, Q., Zhang, X., Li, P., & Chen, S. (2015). Design and calibration of the unilateral sensitive soil moisture sensor. IEEE Sensors Journal,15(8), 4587–4594.

    Google Scholar 

  9. Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors,17(8), 1781.

    Google Scholar 

  10. Anane, R., Raoof, K., & Bouallegue, R. (2016). Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy. Journal of Signal Processing Systems,83(1), 65–81.

    Google Scholar 

  11. Mansoor, N., Muzahidul Islam, A. K. M., Zareei, M., Baharun, S., Wakabayashi, T., & Komaki, S. (2015). Cognitive radio ad-hoc network architectures: A survey. Wireless Personal Communications,81(3), 1117–1142.

    Google Scholar 

  12. Gao, Q., Zuo, Y., Zhang, J., & Peng, X.-H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Technology,59(8), 3956–3965.

    Google Scholar 

  13. Ruirui, Z., Liping, C., Jianhua, G., Zhijun, M., & Gang, X. (2010). An energy-efficient wireless sensor network used for farmland soil moisture monitoring. In 2010 International Conference on Wireless Sensor Network (IET-WSN) (pp 2–6). IET.

  14. Soman, S. S., Zareipour, H. Malik, O., & Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American power symposium 2010 (pp. 1–8). IEEE.

  15. Baghaee, S., Ulusan, H., Chamanian, S., Zorlu, O., Kulah, H., & Uysal-Biyikoglu, E. (2013). Towards a vibration energy harvesting WSN demonstration testbed. In 2013 24th Tyrrhenian international workshop on digital communications-green ICT (TIWDC) (pp. 1–6). IEEE.

  16. Porkumaran, K., Tharu, R. P., Sukanya, S., Elezabeth, V. V., & Gowtham, N. (2017). Micro in-pipe hydro power plant for rural electrification using LabVIEW. In 2017 International conference on innovations in green energy and healthcare technologies (IGEHT) (pp. 1–5). IEEE.

  17. Morais, R., Matos, S. G., Fernandes, M. A., Valente, A. L. G., Soares, S. F. S. P., Ferreira, P. J. S. G., et al. (2008). Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture,64(2), 120–132.

    Google Scholar 

  18. Pietrelli, A., Ferrara, V., Micangeli, A., & Uribe, L. (2015). Efficient energy harvesting for microbial fuel cell dedicated to wireless sensor network. In 2015 XVIII AISEM annual conference (pp. 1–4). IEEE.

  19. Guaitolini, S. V. M., Yahyaoui, I., Fardin, J. F., Encarnação, L. F., & Tadeo, F. (2018). A review of fuel cell and energy cogeneration technologies. In 2018 9th International renewable energy congress (IREC) (pp. 1–6). IEEE.

  20. Lin, F.-T., Kuo, Y.-C., Hsieh, J.-C., Tsai, H.-Y., Liao, Y.-T., & Lee, H.-C. (2015). A self-powering wireless environment monitoring system using soil energy. IEEE Sensors Journal,15(7), 3751–3758.

    Google Scholar 

  21. Kosunalp, S. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-Learning. IEEE Access,4, 5755–5763.

    Google Scholar 

  22. Alzahrani, A., Shamsi, P., Dagli, C., & Ferdowsi, M. (2017). Solar irradiance forecasting using deep neural networks. Procedia Computer Science,114, 304–313.

    Google Scholar 

  23. Zou, T., Lin, S., Feng, Q., & Chen, Y. (2016). Energy-efficient control with harvesting predictions for solar-powered wireless sensor networks. Sensors,16(1), 53.

    Google Scholar 

  24. Niedbała, G. (2019). Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield. Journal of integrative agriculture,18(1), 54–61.

    Google Scholar 

  25. Bergonzini, C., Brunelli, D., & Benini, L. (2009). Algorithms for harvested energy prediction in batteryless wireless sensor networks. In 2009 3rd International workshop on advances in sensors and interfaces (pp. 144–149). IEEE.

  26. Olawoyin, A., & Chen, Y. (2018). Predicting the future with artificial neural network. Procedia Computer Science,140, 383–392.

    Google Scholar 

  27. Yang, J., Rivard, H., & Zmeureanu, R. (2005). On-line building energy prediction using adaptive artificial neural networks. Energy and Buildings,37(12), 1250–1259.

    Google Scholar 

  28. Haddadi, F., Khanchi, S., Shetabi, M., & Derhami, V. (2010). Intrusion detection and attack classification using feed-forward neural network. In 2010 Second international conference on computer and network technology (pp. 262–266). IEEE.

  29. Kadirgama, K., Amirruddin, A. K., & Bakar, R. A. (2014). Estimation of solar radiation by artificial networks: East coast Malaysia. Energy Procedia,52, 383–388.

    Google Scholar 

  30. Dumitru, C.-D., Gligor, A., & Enachescu, C. (2016). Solar photovoltaic energy production forecast using neural networks. Procedia Technology,22, 808–815.

    Google Scholar 

  31. Koskela, T., Lehtokangas, M., Saarinen, J., & Kaski, K. (1996). Time series prediction with multilayer perceptron, FIR and Elman neural networks. In Proceedings of the world congress on neural networks (pp. 491–496). San Diego: INNS Press.

  32. Al-Sammarraie, N. A., Al-Mayali, Y. M. H., & El-Ebiary, Y. A. B. (2018). Classification and diagnosis using back propagation artificial neural networks (ANN). In 2018 International conference on smart computing and electronic enterprise (ICSCEE). IEEE.

  33. Lin, W.-M., & Hong, C.-M. (2010). A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems. IEEE Transactions on Power Electronics,26(2), 473–481.

    Google Scholar 

  34. Hui, S. Y. R., Zhong, W., & Lee, C. K. (2013). A critical review of recent progress in mid-range wireless power transfer. IEEE Transactions on Power Electronics,29(9), 4500–4511.

    Google Scholar 

  35. Mishra, S., & Patra, S. K. (2008). Short term load forecasting using a novel recurrent neural network. In TENCON 20082008 IEEE region 10 conference (pp. 1–6). IEEE.

  36. Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association.

  37. Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks,9(6), 1456–1470.

    Google Scholar 

  38. Watetakarn, S., & Premrudeepreechacharn, S. (2015). Forecasting of solar irradiance for solar power plants by artificial neural network. In 2015 IEEE innovative smart grid technologies-Asia (ISGT ASIA). IEEE.

  39. Praynlin, E., & Jensona, J. I. (2017). Solar radiation forecasting using artificial neural network. In 2017 Innovations in power and advanced computing technologies (i-PACT). IEEE.

  40. Yang, G., & Chen, Y. (2010). The study of electrocardiograph based on radial basis function neural network. In 2010 Third international symposium on intelligent information technology and security informatics (pp. 143–145). IEEE.

  41. Yousif, J. H., Kazem, H. A., Alattar, N. N., & Elhassan, I. I. (2019). A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering,13, 100407.

    Google Scholar 

  42. Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste. Italy. Solar Energy,84(5), 807–821.

    Google Scholar 

  43. Asl, S. F., Ziaei, A. K., Ashari, G., Behrang, A., Assareh, A., & Hedayat, N. (2011). Daily global solar radiation modeling using multi-layer perceptron (MLP) neural networks. World Academy of Science, Engineering and Technology,79, 740–742.

    Google Scholar 

  44. Salima, G., & Chavula, G. M. S. (2012). Determining Angstrom constants for estimating solar radiation in Malawi. International Journal of Geosciences,3(02), 391.

    Google Scholar 

  45. Hasni, A., Sehli, A., Draoui, B., Bassou, A., & Amieur, B. (2012). Estimating global solar radiation using artificial neural network and climate data in the south-western region of Algeria. Energy Procedia,18, 531–537.

    Google Scholar 

  46. Yan, X., Abbes, D., Francois, B. (2014) Solar radiation forecasting using artificial neural network for local power reserve. In 2014 International conference on electrical sciences and technologies in Maghreb (CISTEM) (pp. 1–6). IEEE.

  47. Alluhaidah, B. M., Shehadeh, S. H., & El-Hawary, M. E. (2014). Most influential variables for solar radiation forecasting using artificial neural networks. In 2014 IEEE electrical power and energy conference. IEEE.

  48. Dey, S., Pratiher, S., Banerjee, S., & Mukherjee, C. K. (2017) Solarisnet: A deep regression network for solar radiation prediction. arXiv preprint arXiv:1711.08413.

  49. Manjili, Y. S., Vega, R., & Jamshidi, M. M. (2017). Data-analytic-based adaptive solar energy forecasting framework. IEEE Systems Journal,12(1), 285–296.

    Google Scholar 

  50. Anwar, K., & Deshmukh, S. (2018). Use of artificial neural networks for prediction of solar energy potential in southern states of India. In 2018 2nd International conference on green energy and applications (ICGEA). IEEE.

  51. Wang, Yu., Shen, Y., Mao, S., Cao, G., & Nelms, R. M. (2018). Adaptive learning hybrid model for solar intensity forecasting. IEEE Transactions on Industrial Informatics,14(4), 1635–1645.

    Google Scholar 

  52. Srivastava, R., Tiwari, A. N., & Giri, V. K. (2018). Forecasting of solar radiation in India using various ANN models. In 2018 5th IEEE Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON). IEEE.

  53. Vanderstar, G., Musilek, P., & Nassif, V. K. (2018). Solar forecasting using remote solar monitoring stations and artificial neural networks. In 2018 IEEE Canadian conference on electrical & computer engineering (CCECE). IEEE.

  54. Perveen, G., Rizwan, M., & Goel, N. (2019). Comparison of intelligent modelling techniques for forecasting solar energy and its application in solar PV based energy system. Energy Systems Integration,1(1), 34–51.

    Google Scholar 

  55. Sittalatchoumy, R., & Sivakumar, L. (204). Efficient sensor node determination using proteus. In 2014 International conference on contemporary computing and informatics (IC3I) (pp. 804–810). IEEE.

  56. Zhou, J., Chen, L., & Wang, K. (2015). Path optimality conditions for minimum spanning tree problem with uncertain edge weights. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,23(01), 49–71.

    MathSciNet  MATH  Google Scholar 

  57. Feng, X., & Jimenez, R. (2015). Predicting tunnel squeezing with incomplete data using Bayesian networks. Engineering Geology,195, 214–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Madhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, S.K., Madhu, C., Kaur, D. et al. A Review on Precision Agriculture Using Wireless Sensor Networks Incorporating Energy Forecast Techniques. Wireless Pers Commun 113, 2569–2585 (2020). https://doi.org/10.1007/s11277-020-07341-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07341-y

Keywords

Navigation