Optimization of Emission Waveform by Accelerated Particle Swarm Algorithm Based on Logarithmic Frequency Offset Mathematical Model | Wireless Personal Communications Skip to main content

Advertisement

Log in

Optimization of Emission Waveform by Accelerated Particle Swarm Algorithm Based on Logarithmic Frequency Offset Mathematical Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, a novel technique is applied to achieve time-invariant spatial focusing performance for static and moving target by applying an irregular frequency modulation method to a frequency diverse array (FDA) waveform transmission system. The FDA radar can improve the anti-noise ability of the system by the means of concentrating the waveform energy on the required range or angle sector. However, the synthesized waveform has high sidelobes and is time-varying during the transmission waveform. In view of the above problems, a new waveform synthesis model of rang compensation frequency diverse array (TMRC-FDA) is established and the effect of parameter \(\varsigma\) on the waveform synthesis is analyzed. A new accelerated particle swarm optimization algorithm is used to optimize the distribution of parameter \(\varsigma\). The numerical simulation results show that the proposed TMRC-FDA waveform synthesis method achieves the goal of time invariance and reduces the waveform sidelobes. At the same time, it has better performance in terms of waveform focus compared to log-frequency offset FDA based on time-modulated and fixed parameters \(\varsigma\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu, J., Liao, G., & Zhu, S. (2014). Receive beamforming of frequency diverse array radar systems. In Proceedings of the General Assembly and Scientific Symposium(URSI GASS) (pp. 1–4).

  2. Qin, S., Zhang, Y. D., Amin, M. G., & Gini, F. (2017). Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE Journal of Selected Topics in Signal Processing,11(2), 321–335.

    Article  Google Scholar 

  3. Xu, J., Liao, G., Zhu, S., Huang, L., & So, H. C. (2015). Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Transactions on Signal Processing,63(13), 3396–3410.

    Article  MathSciNet  Google Scholar 

  4. Yao, A.-M., Wu, W., & Fang, D.-G. (2016). Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Transactions on Antennas and Propagation,64(10), 4434–4446.

    Article  MathSciNet  Google Scholar 

  5. Wang, Z., Song, Y., Mu, T., & Ahmad, Z. (2018). A short-range range-angle dependent beampattern synthesis by frequency diverse array. IEEE Access,6, 22664–22669.

    Article  Google Scholar 

  6. Antonik, P, Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Frequency diverse array radars. In Proceedings of 2006 IEEE conference on radar (pp. 215–217).

  7. Wang, W. Q. (2014). Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Transactions on Antennas and Propagation,61(8), 4073–4081.

    Article  MathSciNet  Google Scholar 

  8. Xu, Y., Shi, X., Xu, J., & Li, P. (2015). Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Transactions on Antennas and Propagation,63(7), 3262–3267.

    Article  MathSciNet  Google Scholar 

  9. Khan, W., Qureshi, I. M., & Saeed, S. (2015). Frequency diverse array radar with logarithmically increasing frequency offset. IEEE Antenna Wireless Propagation Letters,14, 499–502.

    Article  Google Scholar 

  10. Fartookzadeh, M., & Armaki, S. H. M. (2017). Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continous waveform. IEEE Antennas Wireless Propagation Letters,17(2), 263–266.

    Article  Google Scholar 

  11. Yao, A.-M., Rocca, P., Wu, W., Massa, A., & Fang, D.-G. (2017). Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing. IEEE Journal of Selected Topics in Signal Processing,11(2), 282–294.

    Article  Google Scholar 

  12. Yao, A.-M., Rocca, P., Wu, W., & Massa, A. (2017). On the design of frequency diverse arrays for wireless power transmission. In Proceedings 11th European conference on antennas and propagation (pp. 900–903).

  13. Khan, W., & Qureshi, I. M. (2014). Frequency diverse array radar with time-dependent frequency offset. IEEE Antennas Wireless Propagation Letters,13, 758–761.

    Article  Google Scholar 

  14. Shao, H. Z., Dai, J., Xiong, J., Chen, H., & Wang, W.-Q. (2016). Dot-shaped range-angle beampattern synthesis for frequency diverse array. IEEE Antennas Wireless Propagation Letters,15, 1703–1706.

    Article  Google Scholar 

  15. Wang, Y., Huang, G., & Li, W. (2017). Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar. IEEE Antennas Wireless Propagation Letters,16, 1003–1006.

    Article  Google Scholar 

  16. Quegan, S. (1997). Spotlight synthetic aperture radar: Signal processing algorithms. Journal of Atmospheric and Solar-Terrestrial Physics,5, 597–598.

    Article  Google Scholar 

  17. Guo, R., Ni, Y., Liu, H., Wang, F., & He, L. (2017). Signal diverse array radar for electronic warfare. IEEE Antennas Wireless Propagation Letters,16, 2906–2910.

    Article  Google Scholar 

  18. Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing,40, 455–467.

    Article  Google Scholar 

  19. Fang, D.-G., Yao, A.-M., & Wu, W. (2016). Synthesis of 4-D beampatterns using 4-D arrays. In Proceedings of the IEEE APS/URSI (pp. 703–704).

  20. Balanis, C. A. (1997). Antenna theory analysis and design. New York: Wiley.

    Google Scholar 

  21. Yao, A.-M., Wu, W., & Fang, D. G. (2015). Single-sideband time-modulated phased array. IEEE Transactions on Antennas and Propagation,63(5), 1957–1968.

    Article  MathSciNet  Google Scholar 

  22. Yao, A.-M., Wu, W., & Fang, D.-G. (2015). Efficient and effective full-wave analysis of the instantaneous and average behaviors of time-modulated arrays. IEEE Transactions on Antennas and Propagation,63(7), 2902–2913.

    Article  MathSciNet  Google Scholar 

  23. Zhu, X., Yang, S., & Nie, Z. (2008). Full-wave simulation of time modulated linear antenna arrays in frequency domain. IEEE Transactions on Antennas and Propagation,56(5), 1479–1482.

    Article  Google Scholar 

  24. Pozar, D. M. (2003). A relation between the active input impedance and the active element pattern of a phased array. IEEE Transactions on Antennas and Propagation,51(9), 2486–2489.

    Article  Google Scholar 

  25. Pornsing, C., Sodhi, M. S., & Lamond, B. F. (2016). Novel self-adaptive particle swarm optimization methods. Soft Computing,20(9), 3579–3593.

    Article  Google Scholar 

  26. Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation,274, 292–305.

    Article  MathSciNet  Google Scholar 

  27. Zavala, A. E. M., Aguirre, A. H., & Diharce, E. R. V. (2005). Particle evolutionary swarm optimization algorithm (PESO). In Proceedings of the Mexican international conference on computer science2005 (pp. 282–289).

  28. Hasançebi, O., & Azad, S. (2012). An efficient metaheuristic algorithm for engineering optimization: SPOT. International Journal of Optimization in Civil Engineering,2, 479–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Qing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Liu, YQ., Li, XL. et al. Optimization of Emission Waveform by Accelerated Particle Swarm Algorithm Based on Logarithmic Frequency Offset Mathematical Model. Wireless Pers Commun 113, 167–187 (2020). https://doi.org/10.1007/s11277-020-07184-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07184-7

Keywords

Navigation