Towards the Shifting of 5G Front Haul Traffic on Passive Optical Network | Wireless Personal Communications
Skip to main content

Towards the Shifting of 5G Front Haul Traffic on Passive Optical Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Centralized radio access network (CRAN) is getting considerable attention in 5G radio access network infrastructure because of supporting deployments of small cells at a massive scale. In particular, CRAN enables network operators to enhance network coverage and capacity without interference with one cell solution and centralized radio processing. This centralization decreases both the network capital and operational expenditures. However, all these technological advancements bring considerable challenges in the transport infrastructure of 5G such as the evolution of the mobile front haul (FH) interface which imposes strict latency and bandwidth requirements on the transport layer. In this paper, the architectural changes that CRAN brings in 5G cellular networks and the intrinsic demands of the FH transport network is discussed. Different techniques that constrain FH requirements to make it cost-efficient are also surveyed. The overall motivation of this work is to achieve the optimal FH transport solution through a passive optical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(source G.sup.5GP)

Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655.

    Google Scholar 

  2. Jiang, D., & Liu, G. (2017). An overview of 5G requirements (pp. 3–26). Berlin: Springer.

    Google Scholar 

  3. Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access, 6, 3619–3647.

    Google Scholar 

  4. Etemad, K., & Baker, M. (2013). Evolution of 3GPP LTE in release 11 and beyond [Guest Editorial]. IEEE Communications Magazine, 51(2), 73–73.

    Google Scholar 

  5. Pizzinat, A., Chanclou, P., Saliou, F., & Diallo, T. (2015). Things you should know about Fronthaul. Journal of Lightwave Technology, 33(5), 1077–1083.

    Google Scholar 

  6. Nakamura, T., Nagata, S., Benjebbour, A., Kishiyama, Y., Hai, T., Xiaodong, S., et al. (2013). Trends in small cell enhancements in LTE advanced. IEEE Communications Magazine, 51(2), 98–105.

    Google Scholar 

  7. Gesbert, D., Kountouris, M., Heath, R. W., Chae, C.-B., & Salzer, T. (2007). From single user to multiuser communications: Shifting the MIMO paradigm. IEEE Signal Processing Magazine, 24(5), 36–46.

    Google Scholar 

  8. Hoydis, J., Ten Brink, S., & Debbah, M. (2011). Massive MIMO: How many antennas do we need? In 2011 49th Annual Allerton conference on communication, control, and computing (Allerton) (pp. 545–550). IEEE.

  9. Okumura, Y., & Terada, J. (2014). Optical network technologies and architectures for backhaul/fronthaul of future radio access supporting big mobile data. In Optical fiber communication conference (pp. Tu3F-1). Optical Society of America.

  10. Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.

    Google Scholar 

  11. Mobile, C. (2011). C-RAN: The road towards green RAN. White Paper, 2, 1–10.

    Google Scholar 

  12. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., et al. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys and Tutorials, 17(1), 405–426.

    Google Scholar 

  13. Lin, Y., Shao, L., Zhu, Z., Wang, Q., & Sabhikhi, R. K. (2010). Wireless network cloud: Architecture and system requirements. IBM Journal of Research and Development, 54(1), 4: 1–4: 12.

    Google Scholar 

  14. Wu, J., Rangan, S., & Zhang, H. (2016). Green communications: Theoretical fundamentals, algorithms, and applications. Boca Raton: CRC Press.

    Google Scholar 

  15. Chanclou, P., Suzuki, H., Wang, J., Ma, Y., Boldi, M. R., Tanaka, K., et al. (2017). How does passive optical network tackle radio access network evolution? Journal of Optical Communications and Networking, 9(11), 1030–1040.

    Google Scholar 

  16. Zhang, J., Xiao, Y., Li, H., & Ji, Y. (2017). Performance analysis of optical mobile fronthaul for cloud radio access networks. In: Journal of Physics: Conference Series (Vol. 910, p. 012053). IOP Publishing.

  17. Boccardi, F., Heath, R. W, Jr., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Google Scholar 

  18. Alliance, N. (2015). Further study on critical C-RAN technologies. Next Generation Mobile Networks v1.0.

  19. Morant, M., & Llorente, R. (2019). Performance analysis of multiple radio-access provision in a multicore-fibre optical fronthaul. Optics Communications, 436, 161–167.

    Google Scholar 

  20. Chih-Lin, I., Huang, J., Duan, R., Cui, C., Jiang, J. X., & Li, L. (2014). Recent progress on C-RAN centralization and cloudification. IEEE Access, 2, 1030–1039.

    Google Scholar 

  21. Pirinen, P. (2014). A brief overview of 5G research activities. In 1st International Conference on 5G for Ubiquitous Connectivity (pp. 17–22). IEEE.

  22. Peng, M., Wang, C., Lau, V., & Poor, H.V. (2015). Fronthaul-constrained cloud radio access networks: Insights and challenges. arXiv preprint arXiv:150301187.

  23. Segel, J., & Weldon, M. (2011). Lightradio portfolio-technical overview. Technology White Paper 1, Alcatel-Lucent.

  24. Bhamare, D., Erbad, A., Jain, R., Zolanvari, M., & Samaka, M. (2018). Efficient virtual network function placement strategies for cloud radio access networks. Computer Communications, 127, 50–60.

    Google Scholar 

  25. Raack, C., Garcia, J. M., & Wessaly, R. (2015). Centralised versus distributed radio access networks: Wireless integration into long reach passive optical networks. In 2015 Conference of telecommunication, media and internet techno-economics (CTTE) (pp. 1–8). IEEE.

  26. De La Oliva, A. (2017). Final 5G-Crosshaul system design and economic analysis. 5G-Crosshaul public deliverable.

  27. Haddad, A., & Gagnaire, M. (2014). Radio-over-fiber (RoF) for mobile backhauling: A technical and economic comparison between analog and digitized RoF. In 2014 International Conference on Optical Network Design and Modeling (pp. 132–137). IEEE.

  28. Shibata, N., Tashiro, T., Kuwano, S., Yuki, N., Fukada, Y., Terada, J., et al. (2015). Performance evaluation of mobile front-haul employing Ethernet-based TDM-PON with IQ data compression. Journal of Optical Communications and Networking, 7(11), B16–B22.

    Google Scholar 

  29. Gomes, N. J., Chanclou, P., Turnbull, P., Magee, A., & Jungnickel, V. (2015). Fronthaul evolution: From CPRI to Ethernet. Optical Fiber Technology, 26, 50–58.

    Google Scholar 

  30. de la Oliva, A., Hernandez, J. A., Larrabeiti, D., & Azcorra, A. (2016). An overview of the CPRI specification and its application to C-RAN-based LTE scenarios. IEEE Communications Magazine, 54(2), 152–159.

    Google Scholar 

  31. Specification, C. (2014). V6. 1 (2014-07-01). Interface Specification Common Public Radio Interface (CPRI).

  32. Fiorani, M., Skubic, B., Martensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L., et al. (2015). On the design of 5G transport networks. Photonic network communications, 30(3), 403–415.

    Google Scholar 

  33. Ranaweera, C., Wong, E., Nirmalathas, A., Jayasundara, C., & Lim, C. (2017). 5G C-RAN architecture: A comparison of multiple optical fronthaul networks. In 2017 International conference on optical network design and modeling (ONDM) (pp. 1–6). IEEE.

  34. Ranaweera, C., Wong, E., Nirmalathas, A., Jayasundara, C., & Lim, C. (2018). 5G C-RAN with optical fronthaul: An analysis from a deployment perspective. Journal of Lightwave Technology, 36(11), 2059–2068.

    Google Scholar 

  35. Agrawal, G. P. (2012). Fiber-optic communication systems (Vol. 222). New York: Wiley.

    Google Scholar 

  36. Bernardos, C. J., De Domenico, A., Ortin, J., Rost, P., & Wübben, D. (2013). Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In 2013 Future Network and Mobile Summit (pp. 1–10). IEEE.

  37. Tashiro, T., Kuwano, S., Terada, J., Kawamura, T., Tanaka, N., Shigematsu, S., & Yoshimoto, N. (2014). A novel DBA scheme for TDM-PON based mobile fronthaul. In OFC 2014 (pp. 1–3). IEEE.

  38. Wake, D., Nkansah, A., & Gomes, N. J. (2010). Radio over fiber link design for next generation wireless systems. Journal of Lightwave Technology, 28(16), 2456–2464.

    Google Scholar 

  39. Guizani, Z., & Hamdi, N. (2017). CRAN, H-CRAN, and F-RAN for 5G systems: Key capabilities and recent advances. International Journal of Network Management, 27(5), e1973.

    Google Scholar 

  40. Wey, J. S., & Zhang, J. (2018). Passive optical networks for 5G transport: Technology and standards. Journal of Lightwave Technology, 37, 2830–2837.

    Google Scholar 

  41. Effenberger, F. J., Kani, J.-I., & Maeda, Y. (2010). Standardization trends and prospective views on the next generation of broadband optical access systems. IEEE Journal on selected areas in communications, 28(6), 773–780.

    Google Scholar 

  42. Alliance, N. (2013). Suggestions on potential solutions to C-RAN. White Paper, January.

  43. Wang, Q., Jiang, D., Liu, G., & Yan, Z. (2009). Coordinated multiple points transmission for LTE-advanced systems. In 2009 5th International Conference on wireless communications, networking and mobile computing (pp. 1–4). IEEE.

  44. Chen, M., Zhang, Y., Hu, L., Taleb, T., & Sheng, Z. (2015). Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5G technologies. Mobile Networks and Applications, 20(6), 704–712.

    Google Scholar 

  45. Park, S., Chae, C.-B., & Bahk, S. (2015). Large-scale antenna operation in heterogeneous cloud radio access networks: A partial centralization approach. IEEE Wireless Communications, 22(3), 32–40.

    Google Scholar 

  46. Zhou, S., Liu, X., Effenberger, F., & Chao, J. (2018). Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile-PON). Journal of Optical Communications and Networking, 10(1), A20–A26.

    Google Scholar 

  47. Kani, J.-I., Terada, J., Suzuki, K.-I., & Otaka, A. (2017). Solutions for future mobile fronthaul and access-network convergence. Journal of Lightwave Technology, 35(3), 527–534.

    Google Scholar 

  48. Miyamoto, K., Kuwano, S., Terada, J., & Otaka, A. (2015). Split-PHY processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul. In Optical fiber communication conference (p. M2J-4). Optical Society of America.

  49. Al-Dakhl, S. A. M. (2013). Planning and design of wavelength division multiplexing passive optical networks (WDM-PON). Fullerton: California State University.

    Google Scholar 

  50. Hernandez, M., Arcia, A., Alvizu, R., & Huerta, M. (2012). A review of XDMA-WDM-PON for next generation optical access networks. In 2012 Global information infrastructure and networking symposium (GIIS) (pp. 1–6). IEEE.

  51. Konstadinidis, C., Sarigiannidis, P., Chatzimisios, P., Raptis, P., Lagkas, T. D. (2018). A multilayer comparative study of XG-PON and 10G-EPON standards. arXiv preprint arXiv:180408007.

  52. Davey, R., Kani, J., Bourgart, F., & McCammon, K. (2006). Options for future optical access networks. IEEE Communications Magazine, 44(10), 50–56.

    Google Scholar 

  53. Naqshbandi, F., & Jha, R. K. (2016). TWDM-PON-AN optical backhaul solution for hybrid optical wireless networks. Journal of Modern Optics, 63(19), 1899–1916.

    Google Scholar 

  54. Nesset, D. (2017). PON roadmap. IEEE/OSA Journal of Optical Communications and Networking, 9(1), A71–A76.

    Google Scholar 

  55. Abbas, H. S., & Gregory, M. A. (2016). The next generation of passive optical networks: A review. Journal of network and computer applications, 67, 53–74.

    Google Scholar 

  56. Pfeiffer, T. (2015). Next generation mobile fronthaul and midhaul architectures. Journal of Optical Communications and Networking, 7(11), B38–B45.

    Google Scholar 

  57. Bhaumik, P. (2016). Next-generation broadband access network architectures and services. Davis: University of California.

    Google Scholar 

  58. Diallo, T., Le Guyader, B., Pizzinat, A., Gosselin, S., Chanclou, P., Saliou, F., Abdelfattath, A., & Aupetit-Berthelemot, C. (2015). A complete fronthaul CWDM single fiber solution including improved monitoring scheme. In 2015 European conference on networks and communications (EuCNC) (pp. 325–329). IEEE.

  59. Iida, D., Kuwano, S., Kani, J.-I., & Terada, J. (2013). Dynamic TWDM-PON for mobile radio access networks. Optics Express, 21(22), 26,209–26,218.

    Google Scholar 

  60. Hatta, S., Tanaka, N., & Sakamoto, T. (2016). Implementation of ultra-low latency dynamic bandwidth allocation method for TDM-PON. IEICE Communications Express, 5(11), 418–423.

    Google Scholar 

  61. Hatta, S., Tanaka, N., & Sakamoto, T. (2017). Feasibility demonstration of low latency DBA method with high bandwidth-efficiency for TDM-PON. In Optical fiber communication conference (p. M3I-2). Optical Society of America

  62. Li, J., Sun, W., Yang, H., & Hu, W. (2014). Adaptive registration in TWDM-PON with ONU migrations. Journal of Optical Communications and Networking, 6(11), 943–951.

    Google Scholar 

  63. van Veen, D., & Houtsma, V. (2017). Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent amplification. In Optical fiber communication conference (p. Th5A-4). Optical Society of America.

  64. Zhang, J., Wey, J. S., Yu, J., Tu, Z., Yang, B., Yang, W., Guo, Y., Huang, X., & Ma, Z. (2018). Symmetrical 50-GB/S/\(\lambda\) PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. In Optical fiber communication conference (p. M1B-4). Optical Society of America.

  65. Tao, M., Zhou, L., Zeng, H., Li, S., & Liu, X. (2017). 50-GB/S/\(\lambda\) TDM-PON based on 10G DML AND 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. In Optical fiber communication conference (p. Tu3G-2). Optical Society of America.

  66. Zhou, X., & Deng, N. (2015). A 25-GB/S 20-km wavelength reused WDM system for mobile fronthaul applications. In 2015 European conference on optical communication (ECOC) (pp. 1–3). IEEE.

  67. Honda, K., Nakamura, H., Hara, K., Sone, K., Nakagawa, G., Hirose, Y., Hoshida, T., Terada, J., & Otaka, A. (2018). Wavelength adjustment of upstream signal using AMCC with power monitoring for WDM-PON in 5G mobile era. In Optical fiber communication conference (p. Tu3L-4). Optical Society of America.

  68. Wey, J. S., Nesset, D., Valvo, M., Grobe, K., Roberts, H., Luo, Y., et al. (2016). Physical layer aspects of NG-PON2 standards-part 1: Optical link design. IEEE/OSA Journal of Optical Communications and Networking, 8(1), 33–42.

    Google Scholar 

  69. Luo, Y., Roberts, H., Grobe, K., Valvo, M., Nesset, D., Asaka, K., et al. (2016). Physical layer aspects of NG-PON2 standards-part 2: System design and technology feasibility. Journal of Optical Communications and Networking, 8(1), 43–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Saeed Jaffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffer, S.S., Hussain, A., Qureshi, M.A. et al. Towards the Shifting of 5G Front Haul Traffic on Passive Optical Network. Wireless Pers Commun 112, 1549–1568 (2020). https://doi.org/10.1007/s11277-020-07115-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07115-6

Keywords