Performance Analysis of Coaxial Probe Fed Modified Sierpinski–Meander Hybrid Fractal Heptaband Antenna for Future Wireless Communication Networks | Wireless Personal Communications Skip to main content
Log in

Performance Analysis of Coaxial Probe Fed Modified Sierpinski–Meander Hybrid Fractal Heptaband Antenna for Future Wireless Communication Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A planar modified Sierpinski–Meander hybrid fractal antenna suitable for future wireless communication networks capable of exhibiting heptaband behavior has been presented in this paper. Proposed radiating structure is obtained by combining a modified Sierpinski gasket and Meander like antenna (for lower frequency) to obtain a hybrid structure exhibiting multiband behavior. Difficulty of designing a complex fractal structure has been eased by using scripting method (*.vbs) in HFSS obtained from IFS and MATLAB. Proposed antenna has partial-defected L-shaped ground structure which helps to obtain higher values of Gain. It has dimensions of 54 × 46 × 1.6 mm3 and resonates at 2.4, 4.437, 5.38, 7.01, 7.60, 8.41 and 9.09 GHz which covers useful applications like Bluetooth, WLAN, Wi-Fi, ISM, RFID, 4G/LTE, radiolocation and mobile/fixed satellite service. Prototype of the proposed structure is fabricated on FR4 substrate and tested. Measured results are analyzed and compared which are in good agreement with the simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hwang, KC. (2007). A modified Sierpinski fractal antenna for multiband application. IEEE Antennas and Wireless Propagation Letters, 6, 356–360.

    Article  Google Scholar 

  2. Vinoy, K. J. (2002). Fractal shaped antenna elements for wide and multiband wireless applications. Pennsylvania: Thesis.

  3. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45, 38–57.

    Article  Google Scholar 

  4. Puente, C., Romeu, J., Bartoleme, R., & Pous, R. (1996). Perturbation of the Sierpinski antenna to allocate operating bands. Electronic Letters, 32, 2186–2188.

    Article  Google Scholar 

  5. Kumar, Y., & Singh. S. (2015) A quad band hybrid fractal antenna for wireless applications. In IEEE international advanced computing conference (IACC) (pp 730–733).

  6. Choukiker, Y. K., Sharma, S. K., & Behera, S. K. (2014). Hybrid fractal shape planar monopole antenna covering multiband wireless communication with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas and Propagation, 62, 1483–1488.

    Article  Google Scholar 

  7. Azaro, R., Debiasi, L., Zeni, E., Benedetti, M., Rocca, P., & Massa, A. (2009). A hybrid prefractal three-band antenna for multistandard mobile wireless applications. IEEE Antennas Wireless Propagation Letter, 8, 905–908.

    Article  Google Scholar 

  8. Sanchez-Montero, R., Rigelsford, J. M., Lopez-Espi, P. L., & Alpuente-Hermosilla, J. (2014) An active multiband antenna for future wireless communications. In The 8th European conference on antennas and propagation (EuCAP-14) (pp. 2989–2991).

  9. Song, C. T. P., Hall, P. S., & Ghafouri-Shiraz, H. (2003). Perturbed Sierpinski multiband fractal antenna with improved feeding technique. IEEE Transactions on Antenna and Propagation, 51(5), 1011–1017.

    Article  Google Scholar 

  10. Junho, Y., & Raj, M. (2001). Modified Sierpinski gasket patch antenna for multiband applications. Proceedings of the IEEE Antennas and Propagation Society International Symposium, 3, 132–135.

    Google Scholar 

  11. Choukiker, Y. K., & Behera, S. K. (2014). Modified Sierpinski square fractal antenna covering ultra wide-band application with band notch characteristics. IET Microwave Antenna Propagation, 8(7), 506–512.

    Article  Google Scholar 

  12. Puente-Baliarda, C., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524.

    Article  MathSciNet  MATH  Google Scholar 

  13. Krzysztofik, W. J. (2009). Modified Sierpinski fractal monopole for ISM-bands handset applications. IEEE Transactions on Antennas and Propagation, 57(3), 606–615.

    Article  Google Scholar 

  14. Kritikos, H. N., & Jaggard, D. L. (1990). Recent advances in electromagnetic theory. New York: Springer.

    Book  Google Scholar 

  15. Chowdary, P. S. R., Prasad, A. M., Rao, P. M., & Anguera, J. (2015). Design and performance study of Sierpinski fractal based patch antennas for multiband and miniaturization characteristics. Wireless Personnel Communication-Springer,. doi:10.1007/s11277-015-2472-5.

    Google Scholar 

  16. Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronic Letters, 32, 1–2.

    Article  Google Scholar 

  17. Puente, C., Romeu, J., Bartolome, R., & Pous, R. (1996). Perturbation of the Sierpinski antenna to allocate operating bands. Electronic Letters, 32, 2186–2188.

    Article  Google Scholar 

  18. Song, C. T. P., et al. (1999). Sierpinski monopole antenna with controlled band spacing and input impedance. Electronic Letter, 35(13), 1036–1037.

    Article  Google Scholar 

  19. Puente, C., Navarro, M., Romeu, J., & Pous, R. (1998). Variation on the fractal Sierpinski antenna flare angle. In Proceedings of IEEE international symposium antennas and propagation (pp. 2340–2343), Atlanta, GA.

  20. Puente Baliarda, C., et al. (2000). An iterative model for fractal antenna application on the Sierpinski gasket antenna. IEEE Transactions on Antennas and Propagation, 48(5), 713–719.

    Article  Google Scholar 

  21. Kumar, Y., & Singh, S. (2015). A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wireless Personal Communications-Springer, 82(2), 57–67.

    Article  Google Scholar 

  22. Tripathi, S., Mohan, A., & Yadav, S. (2014). Ultra wide-band antenna using Minkowski like fractal geometry. Microwave and Optical Technology letters, 56(10), 2273–2279.

    Article  Google Scholar 

  23. Jeun-Wen, Chun-Ren- Lin, & Jui-Han, Lu. (2004). A planar Meander-line antenna for triple-band operation of mobile handsets. Microwave and Optical Technology Letters, 41(5), 380–386.

    Article  Google Scholar 

  24. Weng, L. H., Guo, Y. C., Shi, X. W., & Chen, X. Q. (2008). An overview on defected ground structure. Progress In Electromagnetics Research B, 7, 173–189.

    Article  Google Scholar 

  25. Singh, A., & Singh, S. (2015). A modified coaxial probe-fed Sierpinski fractal wideband and high gain antenna. International Journal of Electronics and Communication (AEU), ELSEVIER, 69, 884–889.

    Article  Google Scholar 

  26. Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd ed.). London: Wiley.

    Google Scholar 

  27. Karli, R., & Ammor, H. (2013). A simple and original design of multiband microstrip patch antenna for wireless communication. International Journal of Microwave Applications, 2(2), 41–44.

    Google Scholar 

  28. Kumar, R.A., Choukiker, Y. K., Behera, S. K. (2012). Design of hybrid fractal antenna for UWB application. In 2012 international conference on computing, electronics and electrical technologies (ICCEET) (pp. 691–693). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadwinder Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Singh, S. Performance Analysis of Coaxial Probe Fed Modified Sierpinski–Meander Hybrid Fractal Heptaband Antenna for Future Wireless Communication Networks. Wireless Pers Commun 94, 3251–3263 (2017). https://doi.org/10.1007/s11277-016-3775-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3775-x

Keywords

Navigation