Theoretical Limits for Time Delay Based Location Estimation in Cooperative Relay Networks | Wireless Personal Communications Skip to main content
Log in

Theoretical Limits for Time Delay Based Location Estimation in Cooperative Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Node localization in wireless networks is crucial for supporting advanced location-based services and improving the performance of network algorithms such as routing schemes. In this paper, we study the fundamental limits for time delay based location estimation in cooperative relay networks. The theoretical limits are investigated by obtaining Cramer–Rao Lower Bound (CRLB) expressions for the unknown source location under different relaying strategies when the location of the destination is known and unknown. More specifically, the effects of amplify-and-forward and decode-and-forward relaying strategies on the location estimation accuracy are studied. Furthermore, the CRLB expressions are derived for the cases where the location of only source as well as both source and destination nodes are unknown considering the relays as reference nodes. In addition, the effects of the node topology on the location estimation accuracy of the source node are investigated. The results reveal that the relaying strategy at relay nodes, the number of relays, and the node topology can have significant impacts on the location accuracy of the source node. Additionally, knowing the location of the destination node is crucial for achieving accurate source localization in cooperative relay networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. c is the speed of light.

  2. Collinearity occurs when a relay node is located on the line between S and D nodes.

References

  1. Wang, T., Cano, A., Giannakis, G. B., & Laneman, N. J. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.

    Article  Google Scholar 

  2. Laneman, N. J., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  3. Cover, T. M., & El Gamal, A. A. (1979). Capacity theorems for the relay channel. IEEE Transaction on Information Theory, 25, 572–584.

    Article  MATH  Google Scholar 

  4. Celebi, H., Abdallah, M., Hussain, S. I., Qaraqe, K. A. & Alouini, M. S. (2010). Time of arrival based location estimation for cooperative relay networks. In Proceedings of the IEEE 21st international symposium on personal indoor and mobile radio communications (IEEE PIMRC) (pp. 872–877).

  5. Gezici, S. (2008). A survey on wireless position estimation. Springer Wireless Personal Communications, Special Issue on Towards Global and Seamless Personal Navigation, 44(3), 263–282.

    Article  Google Scholar 

  6. Qi, Y., Kobayashi, H., & Suda, H. (2006). On time-of-arrival positioning in a multipath environment. IEEE Transactions on Vehicular Technology, 55(5), 1516–1527.

    Article  Google Scholar 

  7. Qi, Y., Kobayashi, H., & Suda, H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Vehicular Technology, 5(3), 672–681.

    Google Scholar 

  8. Qaraqe, K. A., Hussain, S. I., Celebi, H, Abdallah, M, & Alouini, M. S. (2010). An RSS based location estimation technique for cognitive relay networks. In Proceedings of the 3rd International Workshop on Cognitive Radio and Advanced Spectrum Management (CogART’10).

  9. Brennan, D. G. (2003). Linear diversity combining techniques. Proceedings of the IEEE, 91(2), 331–356.

    Article  MathSciNet  Google Scholar 

  10. Turin, G. L. (1960). An introduction to matched filters. IRE Transactions on Information Theory, IT–6(3), 311–329.

    Article  MathSciNet  Google Scholar 

  11. Meyr, H., Moeneclaey, M., & Fechtel, S. A. (1998). Digital communication receivers: Synchronization, channel estimation and signal processing. New York: Wiley.

    Google Scholar 

  12. Qi, Y. & Kobayashi, H. (2002). Cramer-Rao lower bound for geolocation in non-line-of-sight environment. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 2473–2476).

  13. Choi, Y. (2009). New form of block matrix inversion. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent, Mechatronics (pp. 1952–1957).

  14. Celebi, H. (2008). Location Awareness in Cognitive Radio Networks. Ph.D. Dissertation, University of South Florida.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Celik.

Appendix

Appendix

We can represent the log-likelihood function of \(\tau _{i} \varLambda (\tau _{i})\) for the signal at the D node as follows,

$$\begin{aligned} \varLambda (\tau _{i})=-\frac{1}{2\sigma ^2_{Ti}}\int \limits _0^T \left[ y_{di}(t)-Gs(t-\tau _i) \right] ^2 \text {d}t, \end{aligned}$$
(72)

where \(\tau _i=\tau _{1i}+\tau _{2i}+\tau _{proc},\quad i=1,2,3,\dots ,M, G=\alpha _ih_{1i}h_{2i}\sqrt{P}\) when the AF relaying strategy is employed and \(G=\sqrt{P}h_{2i}\) when the DF relaying strategy is used. Assume that \(\alpha _i,h_{1i}\) and \(h_{2i}\) are known parameters. Then, the joint log-likelihood function at the D node is given by,

$$\begin{aligned} \varLambda (\tau )=\displaystyle \sum \limits _{i=1}^M \varLambda (\tau _i). \end{aligned}$$
(73)

In this case, the unknown parameters at the D node are \(\varvec{\theta }=\left[ \tau _{11},\tau _{12},\dots ,\tau _{1M},\tau _{21},\tau _{22},\dots ,\right. \) \(\left. \tau _{2M} \right] \). In order to calculate the CRLBs for \(\varvec{\theta }\) unknown parameters, the FIM can be obtained as follows,

$$\begin{aligned} I_{\varvec{\theta }}=E\left[ \frac{\partial }{\partial \varvec{\theta }}\varLambda (\tau /\varvec{\theta })\left( \frac{\partial }{\partial \varvec{\theta }}\varLambda (\tau /\varvec{\theta })\right) ^T \right] . \end{aligned}$$
(74)

Using (74), the 2Mx2M FIM matrix is calculated, which is given by,

$$\begin{aligned} I_{\varvec{\theta }}=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}^2} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}\partial \tau _{12}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}\partial \tau _{1M}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}\partial \tau _{21}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{11}\partial \tau _{2M}} \\ \frac{\partial ^2 \varLambda (\tau )}{\partial \partial \tau _{12}\partial \tau _{11}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}^2} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}\partial \tau _{1M}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}\partial \tau _{21}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}\partial \tau _{2M}} \\ \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} \vdots &{} &{} \vdots \\ \frac{\partial ^2 \varLambda (\tau )}{\partial \partial \tau _{1M}\partial \tau _{11}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{12}\partial \tau _{1M}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{1M}^2} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{1M}\partial \tau _{21}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{1M}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{1M}\partial \tau _{2M}} \\ \frac{\partial ^2 \varLambda (\tau )}{\partial \partial \tau _{21}\partial \tau _{11}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{21}\partial \tau _{12}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{21}\partial \tau _{1M}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{21}^2} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{21}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{21}\partial \tau _{2M}} \\ \frac{\partial ^2 \varLambda (\tau )}{\partial \partial \tau _{22}\partial \tau _{11}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{22}\partial \tau _{12}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{22}\partial \tau _{1M}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{22}\partial \tau _{21}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{22}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{22}\partial \tau _{2M}} \\ \vdots &{} \vdots &{} &{} \vdots &{} \vdots &{} \vdots &{} &{} \vdots \\ \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}\partial \tau _{11}}&{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}\partial \tau _{12}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}\partial \tau _{1M}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}\partial \tau _{21}} &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}\partial \tau _{22}} &{} \cdots &{} \frac{\partial ^2 \varLambda (\tau )}{\partial \tau _{2M}^2} \\ \end{array} \right] \end{aligned}$$
(75)

The elements of \(I_{\varvec{\theta }}\) matrix can be obtained after straightforward manipulations as follows [14],

$$\begin{aligned} I_{\varvec{\theta }}= \begin{bmatrix} \gamma _1\tilde{E}_1&\quad \cdots&\quad 0&\quad \gamma _1\tilde{E}_1&\quad \cdots&\quad 0 \\ \vdots&\quad \ddots&\quad \vdots&\quad \vdots&\quad \ddots&\quad \vdots \\ 0&\quad \cdots&\quad \gamma _M\tilde{E}_M&\quad 0&\quad \cdots&\quad \gamma _M\tilde{E}_M\\ \gamma _1\tilde{E}_1&\quad \cdots&\quad 0&\quad \gamma _1\tilde{E}_1&\quad \cdots&\quad 0 \\ \vdots&\quad \ddots&\quad \vdots&\quad \vdots&\quad \ddots&\quad \vdots \\ 0&\quad \cdots&\quad \gamma _M\tilde{E}_M&\quad 0&\quad \cdots&\quad \gamma _M\tilde{E}_M\\ \end{bmatrix} \end{aligned}$$
(76)

where \(\gamma _{i}=\frac{G^2}{\sigma ^2_{Ti}}\) and \(\tilde{E}_{i}=\int _0^T \left[ s^{'}(t-\tau _{i})\right] ^2\text {d}t\). We can divide \(I_{\varvec{\theta }}\) matrix into MxM blocks such as,

$$\begin{aligned} I_{\varvec{\theta }}= \begin{bmatrix} A&A\\ A&A \end{bmatrix}, \end{aligned}$$
(77)

where

$$\begin{aligned} A= \begin{bmatrix} \gamma _1\tilde{E}_1&\quad \cdots&\quad 0\\ \vdots&\quad \ddots&\quad \vdots \\ 0&\quad \cdots&\quad \gamma _M\tilde{E}_M \\ \end{bmatrix}. \end{aligned}$$
(78)

If we apply the block matrix inversion to \(I_{\varvec{\theta }}\) in order to find the CRLBs for \(\varvec{\theta }\) parameters, the first MxM block of \(I^{-1}_{\varvec{\theta }}\) matrix can be obtained as follows,

$$\begin{aligned} I^{-1}_{\varvec{\theta }}=\left( A-AA^{-1}A\right) ^{-1}. \end{aligned}$$
(79)

By using (79), the elements of \(I^{-1}_{\varvec{\theta }}\) get \(\infty \) values. Therefore, the CRLBs for \(\varvec{\theta }\) parameters are \(\infty \), namely, \(\xi ^2_{1i}=\xi ^2_{2i}=\infty ,~i=1,2,3,\dots ,M\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, G., Celebi, H. Theoretical Limits for Time Delay Based Location Estimation in Cooperative Relay Networks. Wireless Pers Commun 75, 2429–2448 (2014). https://doi.org/10.1007/s11277-013-1475-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1475-3

Keywords

Navigation