Abstract
This paper describes the combination of an expert system for bio-information with smart devices using a wireless sensor network. A wireless bio-sensor module acquires physiological signals, including electrocardiogram, heart rate, heart rate variability (HRV) and autonomic nervous system activity. The smart device transmits the bio-information over a wireless network to a real-time expert consultation function for analysis, storage and decision making. An artificial neural network algorithm detects the HRV parameters and examines them for features of diabetes. A centralized internet information service platform can interrogate the remote client at any time for its bio-information. In addition, the system platform can compare data files. Bio-information and diabetes information can trigger timely alert messages. The system described in this paper could be the basis for a ubiquitous mobile physiological monitor.

































Similar content being viewed by others
References
Seyd, P. T. A., Joseph, P. K., & Jacob, J. (2011). Automated diagnosis of diabetes using heart rate variability signals. Journal of Medical System, 36, 1935–1941.
Silipo, R., & Marchesi, C. (1998). Artificial neural networks for automatic ECG analysis. IEEE Transactions on Signal Processing, 46(5), 1417–1425.
Prasad, G. K., & Sahambi, J. S. (2003). Classification of ECG arrhythmias using multi-resolution analysis and neural networks. In TENCON 2003 conference on convergent technologies for Asia-Pacific region (pp. 227–231).
Osowski, S., & Linh, T. H. (2001). ECG beat recognition using fuzzy hybrid neural network. IEEE Transactions on Biomedical Engineering, 48, 1265–1271.
Geer, D. (2005). Users make a Beeline for ZigBee sensor technology. Published by the IEEE Computer Society, 38, 16–19.
Kim, T., Kim, D., Park, N., Yoo, S. E., & Lopez, T. S. (2007). Shortcut tree routing in ZigBee networks. In Proceeding of the wireless pervasive computing, ISWPC ’07. 2nd international symposium (pp. 42–47). San Juan.
Safaric, S., & Malaric, K. (2006). ZigBee wireless standard. In Multimedia signal processing and communications, 48th international, symposium ELMAR-2006 (pp. 259–262).
Lee, J. S. (2005). An experiment on performance study of IEEE 802.15.4 wireless networks. In Proceeding of 10th IEEE conference on emerging technologies and factory automation, vol. 2 (pp. 451–458).
Ding, G., Sahinoglu, Z., Orlik, P., Zhang, J., & Bhargava, B. (2006). Tree-based data broadcast in IEEE 802.15.4 and ZigBee networks. IEEE Transactions on Mobile Computing, 38(11), 1561–1574.
Eady, F. (2007). Hands-on Zigbee: Implementing 802.15.4 with microcontrollers (pp. 5–32). London: Newnes.
Carpenter, T. (2006). Wireless# certification official study guide (Exam PW0-050) (pp. 242–250). New York: McGraw-Hill.
Jennic Ltd. JN-UG-3017 (2008). ZigBee Stack User Guide, Rev. 1.6 (pp. 1–30).
Jennic Ltd., JN-UG-3024 (2006). IEEE802.15.4 Wireless Networks User Guide, Rev.1.1 (pp. 1–28).
LAN/MAN Standards Committee of the IEEE Computer Society (2003). 802.15.4 IEEE Standard for Information technology Part 15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE.
Android Developer, http://developer.android.com/.
Conder, S., & Darcey, L. (2011). Android wireless application development (pp. 7–80). Reading, MA: Addison-Wesley.
Malik, M. (1996). Heart rate variability. European Heart Journal, 17(3), 354–381.
National Institutes of Health (2009). Diabetic neuropathies: The nerve damage of diabetes (pp. 1–12). U.S. Department of Health and Human Services.
Nathan, D. M., Clary, P. A., Backlund, J. Y., Genuth, S. M., Lachin, J.M., Orchard, T. J., Raskin, P., & Zinman, B. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group*, 353(25), 2643–2653.
Uehara, A., Kurata, C., Sugi, T., Mikami, T., & Shouda, S. (1999). Diabetic cardiac autonomic dysfunction: Parasympathetic versus sympathetic. Annals of Nuclear Medicine, 13(2), 95–100.
Emily, B., Lloyd, E., Liao, D., Prineas, R. J., Gregory, W., Wayne, D., et al. (2005). Diabetes, Glucose, Insulin, and heart rate variability. Diabetes Care, 28, 668–674.
Seyd, P. T. A., Ahamed, V. I. T., Jacob, J., & Joseph, K. P. (2008). Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. International Journal of Biological and, Life Sciences, 4(1), 24–27.
Kudat, H., Akkaya, V., Sozen, A. B., Salman, S., Demirel, S., Ozcan, M., et al. (2006). Heart rate variability in diabetes patients. The Journal of International Medical Researc, 34, 291–296.
Lee, T. F., Chao, P. J., & Huang, W. L. (2012). An intelligent system approach using artificial neural networks to evaluate the quality of treatment planning for nasopharyngeal carcinoma. Scientific Research and Essays, 7(14), 156–169.
Zhu, J., Zhu, X. D., Liang, S. X., Xu, Z. Y., Zhao, J. D., Huang, Q. F., et al. (2006). Prediction of radiation induced liver disease using artificial neural networks. Japanese Journal of Clinical, 36(12), 783–788.
Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37, 479–489.
Liu, H. S. (2006). Design and implementation of a wireless home health-care network. National Taipei University of Technology, Master paper.
He, T. Y. (2006). A wearable device for real time electrocardiogram(ECG) monitoring. Tzu Chi University, Master paper.
Huang, S. H. (2010). Fuzzy decision analysis applied to wireless physiological detection system. National Kaohsiung University of Applied Sciences, Master paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jong, GJ., Huang, CS., Yu, GJ. et al. Artificial Neural Network Expert System for Integrated Heart Rate Variability. Wireless Pers Commun 75, 483–509 (2014). https://doi.org/10.1007/s11277-013-1373-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-013-1373-8