Outage Probability of Regenerative Protocols for Two-Source Two-Destination Networks | Wireless Personal Communications Skip to main content
Log in

Outage Probability of Regenerative Protocols for Two-Source Two-Destination Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the analytical expressions for the outage probability of different decode-and-forward (DF) relaying strategies for two-source two-destination networks are evaluated allowing an investigation of their effectiveness in energy saving to be determined. Each source node transmits data to an interested destination node with the help of the remaining source node in a cooperative DF manner. Specifically, we consider four DF protocols, including repetition DF (RDF), parallel DF (PDF), network coding-based RDF (NC-RDF), and dirty paper coding-like network coding-based PDF (DPC-NC-PDF). The closed-form expression of the outage probability for each protocol is derived at high signal-to-noise ratio. The results show that the DPC-NC-PDF protocol achieves the best performance while the NC-RDF protocol is better than both the RDF and PDF protocols with proper linear NC coefficients. All the DF protocols are shown to achieve diversity order one and the highest multiplexing gain is achieved with the NC-RDF and DPC-NC-PDF protocols. Finally, simulation results are presented to verify the analytical findings and show the system throughput comparison of various DF protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity—Part I. System description IEEE Transactions on Communications 51(11): 1927–1938

    Article  Google Scholar 

  2. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity—Part II. Implementation aspects and performance analysis, IEEE Transactions on Communications 51(11): 1939–1948

    Article  Google Scholar 

  3. Laneman J., Tse D., Wornell G. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12): 3062–3080

    Article  MathSciNet  Google Scholar 

  4. Loa K., Wu C. C., Sheu S. T., Yuan Y., Chion M., Huo D. (2010) IMT-advanced relay standards [WiMAX/LTE update]. IEEE Communications Magazine 48(8): 40–48

    Article  Google Scholar 

  5. Yang Y., Hu H., Xu J., Mao G. (2009) Relay technologies for WiMax and LTE-advanced mobile systems. IEEE Communications Magazine 47(10): 100–105

    Article  Google Scholar 

  6. Garcia, I., Sakaguchi, K., & Araki, K. (2008). Cell planning for cooperative transmission. In Proceedings of IEEE WCNC’08, Las Vegas, USA (pp. 1769–1774).

  7. Sheng Z., Leung K., Ding Z. (2011) Cooperative wireless networks: From radio to network protocol designs. IEEE Communications Magazine 49(5): 64–69

    Article  Google Scholar 

  8. Moh, S. (2008). Two cooperation models and their optimal routing for cooperative diversity in wireless ad hoc networks. In Proceedings of IEEE ISWCS’08, Reykjavik, Iceland (pp. 57–61).

  9. Sharma S., Shi Y., Hou Y., Kompella S. (2011) An optimal algorithm for relay node assignment in cooperative ad hoc networks. IEEE/ACM Transactions on Networking 19(3): 879–892

    Article  Google Scholar 

  10. Sun L., Zhang T., Lu L., Niu H. (2009) Cooperative communications with relay selection in wireless sensor networks. IEEE Transactions on Consumer Electronics 55(2): 513–517

    Article  Google Scholar 

  11. Elhawary M., Haas Z. (2011) Energy-efficient protocol for cooperative networks. IEEE/ACM Transactions on Networking 19(2): 561–574

    Article  Google Scholar 

  12. Chen Y., Teo J., Lai J., Gunawan E., Low K.S., Soh C.B. (2009) Cooperative communications in ultra-wideband wireless body area networks: Channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1): 5–16

    Article  Google Scholar 

  13. D’Errico, R., Rosini, R., & Maman, M. (2011). A performance evaluation of cooperative schemes for on-body area networks based on measured time-variant channels. In Proceedings of IEEE ICC 2011, Kyoto, Japan (pp. 1–5).

  14. Dimakis A., Prabhakaran V., Ramchandran K. (2006) Decentralized erasure codes for distributed networked storage. IEEE Transactions on Information Theory 52(6): 2809–2816

    Article  MathSciNet  Google Scholar 

  15. Dimakis A., Ramchandran K., Wu Y., Suh C. (2011) A survey on network codes for distributed storage. Proceedings of the IEEE 99(3): 476–489

    Article  Google Scholar 

  16. Ahlswede R., Cai N., Li S. Y., Yeung R. (2000) Network information flow. IEEE Transactions on Information Theory 46(4): 1204–1216

    Article  MathSciNet  MATH  Google Scholar 

  17. Koetter R., Medard M. (2003) An algebraic approach to network coding. IEEE/ACM Transactions on Networking 11(5): 782–795

    Article  Google Scholar 

  18. Katti, S., Katabi, D., Hu, W., Rahul, H., & Medard, M. (2005). The importance of being opportunistic: Practical network coding for wireless environments. In Proceedings of Allerton’05. Montecillo, Illinois, USA.

  19. Zhang, S., Liew, S. C., & Lam, P. P. (2006). Hot topic: Physical-layer network coding. In Proceedings of ACM MobiCom’06, Los Angeles, CA, USA (pp. 358–365).

  20. Katti, S., Gollakota, S., & Katabi, D. (2007). Embracing wireless interference: Analog network coding. In Proceedings of ACM SIGCOMM’07, Kyoto, Japan (pp. 397–408).

  21. Katti S., Rahul H., Hu W., Katabi D., Medard M., Crowcroft J. (2008) XORs in the air: Practical wireless network coding. IEEE/ACM Transactions on Networking 16(3): 497–510

    Article  Google Scholar 

  22. Zhang J., Ben Letaief K., Fan P., Cai K. (2009) Network-coding-based signal recovery for efficient scheduling in wireless networks. IEEE Transactions on Vehicular Technology 58(3): 1572–1582

    Article  Google Scholar 

  23. Louie R., Li Y., Vucetic B. (2010) Practical physical layer network coding for two-way relay channels: Performance analysis and comparison. IEEE Transactions on Wireless Communications 9(2): 764–777

    Article  Google Scholar 

  24. Laneman, J. (2006). Co-operative diversity: models, algorithms, and architectures. In Cooperation in wireless networks: principles and applications. Springer, New York (2006).

  25. Fawaz N., Gesbert D., Debbah M. (2008) When network coding and dirty paper coding meet in a cooperative ad hoc network. IEEE Transactions on Wireless Communications 7(5): 1862–1867

    Article  Google Scholar 

  26. Costa M. (1983) Writing on dirty paper (corresp.). IEEE Transactions on Information Theory, 27(3): 439–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc-Tuan Vien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vien, QT., Stewart, B.G. & Nguyen, H.X. Outage Probability of Regenerative Protocols for Two-Source Two-Destination Networks. Wireless Pers Commun 69, 1969–1981 (2013). https://doi.org/10.1007/s11277-012-0673-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0673-8

Keywords

Navigation