Joint waveform design for multi-user maritime integrated sensing and communication | Wireless Networks Skip to main content
Log in

Joint waveform design for multi-user maritime integrated sensing and communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose an integrated sensing and communication (ISAC) base station (BS) system designed for applications by multiple users in complex offshore environments. We begin by modeling the communication and detection functions of the dual-function BS in the corresponding maritime channel environment, as well as the sea clutter influence of multiple-input-multiple-output (MIMO) radar in the marine environment. To evaluate the performance of our dual-function system, we measure the communication reachable rate and sensing signal-clutter-noise ratio (SCNR) of the offshore system separately for communication and radar functions, respectively. We then develop two optimization schemes to maximize the system’s performance under power constraint of radar SCNR and communication rate constraint, respectively, and solve them using convex optimization methods such as the successive convex approximation (SCA) method. We also model the beamforming and provide simulation results that demonstrate the effectiveness of our proposed maritime integrated sensing and communication (MISAC) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kidston, D., & Kunz, T. (2008). Challenges and opportunities in managing maritime networks. IEEE Communications Magazine, 46(10), 162–168.

    Article  Google Scholar 

  2. Lopes, M.J., Teixeira, F., Mamede, J. B., & Campos, R. (2014, September). Wi-Fi broadband maritime communications using 5.8 GHz band. In 2014 underwater communications and networking (UComms) (pp. 1-5). https://doi.org/10.1109/UComms.2014.7017139

  3. Kumari, P., Mezghani, A., & Heath, R. W. (2021). JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar. IEEE Open Journal of Vehicular Technology, 2, 218–234. https://doi.org/10.1109/OJVT.2021.3069946

    Article  Google Scholar 

  4. Guerci, J. R., Guerci, R. M., Lackpour, A., & Moskowitz, D. (2015, May). Joint design and operation of shared spectrum access for radar and communications. In 2015 IEEE radar conference (RadarCon) (pp. 0761-0766). https://doi.org/10.1109/RADAR.2015.7131098

  5. Ding, H., da Costa, D. B., Coon, J., & Chen, Y. (2018). Relay when blocked: A hop-by-hop mmWave cooperative transmission protocol. IEEE Communications Letters, 22(9), 1894–1897. https://doi.org/10.1109/LCOMM.2018.2855964

    Article  Google Scholar 

  6. Li, B., & Petropulu, A. (2016). MIMO radar and communication spectrum sharing with clutter mitigation[C]2016 IEEE radar conference (RadarConf). IEEE Open Journal of Vehicular Technology, 2, 218–234. https://doi.org/10.1109/RADAR.2016.7485158

    Article  Google Scholar 

  7. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access, 1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  8. Molnar, J. A., Corretjer, I., & Tavik, G. (2011). Integrated topside-integration of narrowband and wideband array antennas for shipboard communications. In 2011-MILCOM 2011 military communications conference (pp. 1802–1807). https://doi.org/10.1109/MILCOM.2011.6127573

  9. Roberton, M., & Brown, E. R. (2003). Integrated radar and communications based on chirped spread-spectrum techniques. In IEEE MTT-S international microwave symposium digest, 2003 (Vol. 1, pp. 611–614). https://doi.org/10.1109/MWSYM.2003.1211013

  10. Shi, C., Wang, F., Sellathurai, M., Zhou, J., & Salous, S. (2017). Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence. IEEE Transactions on Signal Processing, 66(5), 1316–1330. https://doi.org/10.1109/TSP.2017.2770086

    Article  MathSciNet  Google Scholar 

  11. Liu, F., Zhou, L., Masouros, C., Li, A., Luo, W., & Petropulu, A. (2018). Toward dual-functional radar-communication systems: Optimal waveform design. IEEE Transactions on Signal Processing, 66(16), 4264–4279. https://doi.org/10.1109/TSP.2018.2847648

    Article  MathSciNet  Google Scholar 

  12. Li, B., & Petropulu, A. P. (2017). Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter. IEEE Transactions on Aerospace and Electronic Systems, 53(6), 2846–2864. https://doi.org/10.1109/TAES.2017.2717518

    Article  Google Scholar 

  13. Chen, Y., & Gu, X. (2020). Time allocation for integrated bi-static radar and communication systems. IEEE Communications Letters, 25(3), 1033–1036. https://doi.org/10.1109/LCOMM.2020.3039054

    Article  Google Scholar 

  14. Liu, F., Cui, Y., Masouros, C., Xu, J., Han, T. X., Eldar, Y. C., & Buzzi, S. (2022). Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2022.3156632

    Article  Google Scholar 

  15. Ahmed, A., Zhang, Y. D., & Himed, B. (2019). Distributed dual-function radar-communication MIMO system with optimized resource allocation. In 2019 IEEE radar conference (RadarConf) (pp. 1–5). https://doi.org/10.1109/RADAR.2019.8835674

  16. Bazzi, A., & Chafii, M. (2022). On outage-based beamforming design for dual-functional radar-communication 6g systems. arXiv preprint arXiv:2207.04921https://doi.org/10.48550/arXiv.

  17. Ahmed, A., Zhang, Y. D., & Himed, B. (2019, April). Distributed dual-function radar-communication MIMO system with optimized resource allocation. In 2019 IEEE radar conference (RadarConf) (pp. 1–5). https://doi.org/10.1109/RADAR.2019.8835674

  18. Cui, Y., Liu, F., Jing, X., & Mu, J. (2021). Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Network, 35(5), 158–167. https://doi.org/10.1109/MNET.010.2100152

    Article  Google Scholar 

  19. Speller, I. (2022). Modern maritime strategy and naval warfare. In Routledge handbook of maritime security (pp. 49–61). https://doi.org/10.4324/9781003001324-6

  20. Lopes, M. J., Teixeira, F., Mamede, J. B., & Campos, R. (2014, September). Wi-Fi broadband maritime communications using 5.8 GHz band. In 2014 underwater communications and networking (UComms) (pp. 1–5). https://doi.org/10.1109/UComms.2014.70171392.

  21. Arreghini, F., Agrone, R., Danielli, P., & Pigni, A. (2015, October). Heterogeneous network testbed for tactical communication in shore scenario. In MILCOM 2015–2015 IEEE military communications conference (pp. 483–488). https://doi.org/10.1109/MILCOM.2015.7357489

  22. Liu, M., Liu, C., Chen, Y., et al. (2022). Radio frequency fingerprint collaborative intelligent blind identification for green radios. IEEE Transactions on Green Communications and Networking. https://doi.org/10.1109/TGCN.2022.3185045

    Article  Google Scholar 

  23. Di, L., Su, H., Weiwei, W., & Gang, W. (2023). Few-shot RF fingerprinting recognition for secure satellite remote sensing and image processing. Science China Information Sciences. https://doi.org/10.1007/s11432-022-3672-7

    Article  Google Scholar 

  24. Xu, Y., Tang, J., & Li, B. (2012). Adaptive aggregate transmission for device-to-multi-device aided cooperative NOMA networks. IEEE Journal on Selected Areas in Communications 2022, 40(4), 1355–1370. https://doi.org/10.1109/JSAC.2022.3143267

    Article  Google Scholar 

  25. Liu, M., Zhang, H., Liu, Z., & Zhao, N. (2022). Attacking spectrum sensing with adversarial deep learning in cognitive radio-enabled internet of things. IEEE Transactions on Reliability. https://doi.org/10.1109/ACCESS.2018.2879902

    Article  Google Scholar 

  26. Xu, Y., Li, B., Zhao, N., et al. (2020). Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channels. IEEE Transactions on Communications, 69(1), 207–222. https://doi.org/10.1109/TCOMM.2020.3025555

    Article  Google Scholar 

  27. Liu, M., Zhang, H., Liu, Z., & Zhao, N. (2022). DAttacking spectrum sensing with adversarial deep learning in cognitive radio-enabled internet of things. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2022.3179491

    Article  Google Scholar 

  28. Mahal, J. A., Khawar, A., Abdelhadi, A., & Clancy, T. C. (2017). Spectral coexistence of MIMO radar and MIMO cellular system. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 655–668. https://doi.org/10.1109/TAES.2017.2651698

    Article  Google Scholar 

  29. Mehrnia, N., & Ozdemir, M. K. (2016, September). Novel maritime channel models for millimeter radiowaves. In 2016 24th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6). https://doi.org/10.1109/SOFTCOM.2016.7772162

  30. Mo, H., Chen, B., & Shen, C. (2012). Radio propagation prediction model for maritime mobile communication. https://doi.org/10.1049/cp.2012.2075

  31. Wang, J., Zhou, H., Li, Y., Sun, Q., Wu, Y., Jin, S., & Xu, C. (2018). Wireless channel models for maritime communications. Journals & Magazines. https://doi.org/10.1109/ACCESS.2018.2879902

    Article  Google Scholar 

  32. Yasotharan, A., & Thayaparan, T. (2006). Time-frequency method for detecting an accelerating target in sea clutter. IEEE Transactions on Aerospace and Electronic Systems, 42(4), 1289–1310. https://doi.org/10.1109/TAES.2006.314573

    Article  Google Scholar 

  33. Chen, X., Guan, J., Bao, Z., & He, Y. (2013). Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1002–1018. https://doi.org/10.1109/TGRS.2013.2246574

    Article  Google Scholar 

  34. Chen, L., Wang, Z., Du, Y., Chen, Y., & Yu, F. R. (2022). Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication. IEEE Journal on Selected Areas in Communications, 40(6), 1795–1808. https://doi.org/10.1109/JSAC.2022.3155515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, G., Yang, H. et al. Joint waveform design for multi-user maritime integrated sensing and communication. Wireless Netw 30, 5919–5930 (2024). https://doi.org/10.1007/s11276-023-03386-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03386-6

Keywords