Design of a wireless monitoring system with emission analysis integration for solid-fuel based heating devices in households of SmartCity | Wireless Networks
Skip to main content

Advertisement

Design of a wireless monitoring system with emission analysis integration for solid-fuel based heating devices in households of SmartCity

  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2024

This article has been updated

Abstract

The study presents a conceptual design of a wireless sensor network aimed to evaluating the SmartCity air quality in real-time. The sensor devices shall autonomously monitor flue gas temperatures, carbon monoxide (CO) and particulate matter concentrations (\(PM_{2.5}\) and \(PM_{10}\)). The measurement system shall consist of a GSM SIM module connected to an Arduino micro-controller. Based on a statistical analysis of the system nodes, a range of 1 to 4 nodes are recommended per hundred households to achieve an global emission accuracy of at least 80%. The emission analysis has shown a 17% savings on the daily average production of emissions. The model predicts a decrease of total amount of released emissions from 4,5 tonnes to 3,8 tonnes per ten thousand households. The acquired performance data and visibility improved daily regulation countermeasures, where a 50 kg decrease of CO per day is predicted per thousand households. In conclusion, the research has demonstrated benefits of monitoring SmartCity emissions via a wireless sensor network. Further research/design processes are recommended to evaluate the characteristics and trade-offs of the wireless, structural or electronic aspects of the emission monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Ústav, S. H. (2021). Aktuálne p-riemerné hodinové koncentrácie častíc \(pm_{10}\). https://www.shmu.sk/sk/?page=1&id=oko_imis_map_pm10.

  2. Nam, T., & Pardo, T. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. ACM International Conference Proceeding Series, pp. 282–291, 06.

  3. Wang, C., Gu, J., Martínez, O. S., & Crespo, R. G. (2021). Economic and environmental impacts of energy efficiency over smart cities and regulatory measures using a smart technological solution. Sustainable Energy Technologies and Assessments, 47: 101422. https://www.sciencedirect.com/science/article/pii/S221313882100432X.

  4. Sikora-Fernandez, D. (2018). Smarter cities in post-socialist country: Example of poland. Cities, 78: 52–59. https://www.sciencedirect.com/science/article/pii/S0264275117306601.

  5. Agency, European Environmental. (2017). News european air quality index: current air quality information at your finger tips, 11. https://www.eea.europa.eu/highlights/european-air-quality-index-current.

  6. Obringer, R., & Nateghi, R. (2021). What makes a city ‘smart’ n the anthropocene? a critical review of smart cities under climate change. Sustainable Cities and Society, p. 103278. https://www.sciencedirect.com/science/article/pii/S2210670721005540.

  7. Hoang, A. T., Pham, V. V., & Nguyen, X. P. (2021). Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production, 305: 127161. https://www.sciencedirect.com/science/article/pii/S0959652621013809.

  8. Štroffeková, S. (2019). Emisie hlavných znečisťujúcich látok z energetiky., www.enviroportal.sk/indicator/detail?id=1102.

  9. climatechangeconnection.org. Co2 equivalents—climate change connection, 2020. https://climatechangeconnection.org/emissions/co2-equivalents.

  10. Szemsová, J., & Ďuricová I. (2018). Údaje o emisiách z vykurovania rodinných domov. [online] shmu. http://www.shmu.sk/en/?page=2049&id=955.

  11. Višňovský, V. (2020). Revízia kotla. koľko vám môže ušetriť?. https://www.innogyporadenstvo.sk/blog/bezpecnost/revizia-kotla-kolko-vam-moze-usetrit/.

  12. Košičanová, D. (2018). Kontroly kotolní, prevádzka a servis. https://tzbportal.sk/kurenie-voda-plyn/kontroly-kotolni-prevadzka-a-servis.

  13. Stupavský, V. (2020). Smernice o ekodesignu pro kotle a kamna na tuha paliva. https://vytapeni.tzb-info.cz/kotlikove-dotace/11937-smernice-o-ekodesignu-pro-kotle-a-kamna-na-tuha-paliva.

  14. Schmidl, C., & Haslinger, W. (2010). European wood-heating technology survey: An overview of combustion principles and the energy and emissions performance characteristics of commercially available systems in austria, germany, denmark, norway and sweden. new york state energy research and development authority.

  15. Zhang, H., Zhang, J., & Wang, R. (2021). Smart carbon monitoring platform under iot-cloud architecture for small cities in b5g. Wireless Networks, 1(80), 8.

  16. Kumar, S., Duttagupta, S., Rangan, Venkat, P., & Ramesh, M. V. (2020). Reliable network connectivity in wireless sensor networks for remote monitoring of landslides. Wireless Networks, 26(1): 2137–2152, 6.

  17. Vikram, R., Sinha, D., De, D., & Das, A. K. (2020). Eeffl: Energy efficient data forwarding for forest fire detection using localization technique in wireless sensor network. Wireless Networks, 26(1): 5177–5205, 6.

  18. Sah, D. K., Amgoth, T. (2020). A novel efficient clustering protocol for energy harvesting in wireless sensor networks. Wireless Networks, 26(1): 4723–4737, 5.

  19. Afsar, M. M., & Tayarani-N. M. -H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46: 198–226. https://www.sciencedirect.com/science/article/pii/S1084804514002124.

  20. Chu, Z., Cheng, M., & Yu, N. N. (2021). A smart city is a less polluted city. Technological Forecasting and Social Change, 172: 121037. https://www.sciencedirect.com/science/article/pii/S0040162521004698.

  21. Tritia, Air. (2021). Systém krátkodobej predpovede pre oblasť air tritia (pws). https://air-tritia-test.herokuapp.com/sk.

  22. Yigitcanlar, T., & Kamruzzaman, M. (2018). Does smart city policy lead to sustainability of cities? Land Use Policy, 73: 49–58. https://www.sciencedirect.com/science/article/pii/S0264837717314667.

  23. Shi, W., Cao, J., Zhang, Q., Li, Y., & Lanyu, X. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.

    Article  Google Scholar 

  24. Román, R., López, J., & Mambo, M. (2018). Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems, 78: 680–698.

  25. BOSMAL. (2021). Exhaust gas opacity measurements. https://www.bosmal.eu/290-exhaust_gas_opacity_measurements.

  26. Bureau of Mines Staff. (1967). Ringelmann smoke chart. US Government: Technical report.

  27. Prakasa, E., & Muchlis. (2017). Development of imaging based method for plume opacity measurement. In 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), pp. 212–216

  28. ElectronicWings. (2021). Thermocouple interfacing with arduino uno. https://www.electronicwings.com/arduino/thermocouple-interfacing-with-arduino-uno.

  29. laskarduino. (2021). Optický senzor kvality ovzduší. https://www.laskarduino.cz/sharp-gp2y1010au0f-opticky-senzor-kvality-ovzdusi/.

  30. Theerawisitpong, S., Homchuen, D., Pinpathomrat, P. (2012).The study and analysis on air-interface problems over gsm cellular network in central pattaya area. Procedia Engineering, 32: 336–341. ISEEC.

  31. Arduino. (2021). Arduino gsm shield v2. https://www.arduino.cc/en/Main.ArduinoGSMShield.

  32. Lora communication between two arduino using lora module sx1278, 2019. https://iotdesignpro.com/projects/lora-communication-between-two-arduino-using-LoRa-Module-SX1278.

  33. 3Dsystems. (2021). Figure 4 hi temp 300-amb, 9. https://www.3dsystems.com/materials/figure-4-hi-temp-300-amb.

  34. Janka, S., Ivana, Ď. (2018). Údaje o emisiách z vykurovania rodinných domov.https://www.shmu.sk/sk//?page=2049&id=955 .

  35. Smernice o ekodesignu pro kotle a kamna na tuha paliva, (2020). https://www.oplyne.info/ecology/porovnanie-produkcie-znecistujucich-latok-so2-tzl-nox-co-a-sklenikoveho-plynu-co2-vyprodukovanych-spalinami-v-rodinnom-dome-vykurovanie-drevom-ciernym-hnedym-uhlim-a-zemnym-plynom/.

  36. Haydel, J. (2015). Link budget calculations and choosing the correct antenna.

Download references

Funding

This work has been supported by the projects VEGA 1/0479/19 “Impact of combustion conditions on the production of particulate matter in small heat sources” and VEGA 1/0233/19 “Construction modification of the burner for combustion of solid fuels in small heat sources”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holubčík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: due to interchanged given and family names of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holubčík, M., Jandačka, J. & Nicolanská, M. Design of a wireless monitoring system with emission analysis integration for solid-fuel based heating devices in households of SmartCity. Wireless Netw 30, 4055–4064 (2024). https://doi.org/10.1007/s11276-021-02859-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02859-w

Keywords