Cross layered cryptography based secure routing for IoT-enabled smart healthcare system | Wireless Networks Skip to main content
Log in

Cross layered cryptography based secure routing for IoT-enabled smart healthcare system

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Internet of Things (IoT) empowered smart city applications like e-healthcare received serious attention, especially in pandemic situations. Wireless Sensor Networks assisted IoT applications have suffered from challenges like security, privacy preservation, QoS, and network lifetime. Addressing these challenges has essential for IoT-enabled healthcare systems to protect the patient’s sensitive data from the different threats. We propose a novel methodology called Cross-Layer and Cryptography-based Secure Routing (CLCSR) protocol to perform attack detection, privacy preservations, and secure data transmission. The proposed CLCSR protocol consists of two phases: (1) the cross-layer mechanism of secure clustering and (2) lightweight cryptography for privacy preservation of users and data. After network deployment, we have designed secure and optimal CH selection by computing the cross-layer parameters. In the first phase, we propose a cross-layer probability model to correctly identify multi-layer security threats. This integrated process of attack detection and CH-selection improves the network performance. In the second phase, we focus on privacy preservation medical information and users in the network. To protect sensitive medical information and user identity, lightweight Elliptic Curve Cryptography (ECC) based authentication and authorization algorithms for privacy preservation. The hybrid encryption algorithm using 256 bit ECC public key proposed in CLCSR protocol followed by the signature verification. The data transmission phase uses the periodically computed cross-layer probability to select the relay node to reduce the data loss. We use Network Simulator (NS2) to implement and evaluate the CLCSR protocol along with state-of-art protocols. The simulation results show that the CLCSR protocol improves the performance compared to state-of-art protocols in terms of average throughput, Packet Delivery Ratio, average energy consumption, routing overhead, and cryptography time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Polowczyk, J. (2015). Zero marginal cost society. The Internet of Things, the collaborative commons, and the eclipse of capitalism (Book Review). Economics and Business Review, 1(15), 121–124. https://doi.org/10.18559/ebr.2015.3.9

    Article  Google Scholar 

  2. Kleidermacher, D. (2020). Building an Internet of Secure Things. Computer, 53, 100–104. https://doi.org/10.1109/MC.2020.2997309

    Article  Google Scholar 

  3. Karthikeyan, S., & Balamurugan, B. (2021). Internet of Things. https://doi.org/10.1201/9780429352898-3

    Article  Google Scholar 

  4. Kamila, N. K., & Dhal, S. (2016). Overview of WSN infrastructure models, design & management. International Journal on Recent and Innovation Trends in Computing and Communication., 4, 09–13.

    Google Scholar 

  5. Zaimen, K., Brahmia, M.-E.-A., Dollinger, J.-F., Moalic, L., Abouaissa, A., & Idoumghar, L. (2020). A overview on WSN deployment and a novel conceptual BIM-based approach in smart buildings. https://doi.org/10.1109/IOTSMS52051.2020.9340226.

  6. Mahajan, H. B., & Badarla, A. (2018). Application of Internet of Things for smart precision farming: Solutions and challenges. International Journal of Advanced Science and Technology, Vol. Dec. 2018, pp. 37–45.

  7. Moundounga, A. R. A., Satori, H. & Satori, K. (2020). An overview of routing techniques in WSNs. https://doi.org/10.1109/ICDS50568.2020.9268764

  8. Elhoseny, M. & Hassanien, A.E. (2019). Secure data transmission in WSN: An overview. https://doi.org/10.1007/978-3-319-92807-4_6

  9. Al-Ani, K., Abdalkafor, A., & Nassar, A. (2020). An overview of wireless sensor network and its applications. Indonesian Journal of Electrical Engineering and Computer Science, 17, 1480. https://doi.org/10.11591/ijeecs.v17.i3.pp1480-1486

    Article  Google Scholar 

  10. Onuekwusi, N., & Okpara, C. (2020). Wireless Sensor Networks (WSN): An overview. American Scientific Research Journal for Engineering, Technology, and Sciences., 64, 53–63.

    Google Scholar 

  11. Moorthy H. R. (2020). WSN in defence field: A security overview. https://doi.org/10.1109/I-SMAC49090.2020.9243406

  12. Medagliani, P., Leguay, J., Duda, A., Rousseau, F., Duquennoy, S., Raza, S., Ferrari, G., Gonizzi, P., Cirani, S., Veltri, L., Montón, M., Domingo, P. M., Dohler, M., Villajosana, I., Dupont, O. (2014). Internet of Things Applications - From research and innovation to market deployment.

  13. AlTurjman, F., Zahmatkesh, H., & Shahroze, R. (2019). An overview of security and privacy in smart cities’ IoT communications. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3677

    Article  Google Scholar 

  14. Al-Turjman, F. (2019). Intelligence and security in big 5G-oriented IoNT: An overview. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2019.08.009

    Article  Google Scholar 

  15. Kocher, I., Chow, C. O., Ishii, H., & Zia, T. (2013). Threat models and security issues in Wireless Sensor Networks. International Journal of Computer Theory and Engineering, 5, 830–835. https://doi.org/10.7763/IJCTE.2013.V5.806

    Article  Google Scholar 

  16. Yang, H., Luo, H., Ye, F., Lu, S., & Zhang, L. (2004). Security in Mobile Ad Hoc networks: Challenges and solutions. Wireless Communications, IEEE., 11, 38–47. https://doi.org/10.1109/MWC.2004.1269716

    Article  Google Scholar 

  17. Mahajan, H. B., & Badarla, A. (2020). Detecting HTTP vulnerabilities in IoT-based precision farming connected with cloud environment using Artificial Intelligence. International Journal of Advanced Science and Technology, 29(3), 214–226.

    Google Scholar 

  18. Kaur, A., Gupta, P., & Garg, R. (2021). Soft computing techniques for clustering in WSN soft computing techniques for clustering in WSN. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/1022/1/012041

    Article  Google Scholar 

  19. Mahajan, H. B., & Badarla, A. (2019). Experimental analysis of recent clustering algorithms for wireless sensor network: Application of IoT based smart precision farming. Journal of Advance Research in Dynamical & Control Systems. https://doi.org/10.5373/JARDCS/V11I9/20193162

    Article  Google Scholar 

  20. Zin, S., Anuar, N., Mat, K., Miss, L., & Pathan, A.-S. (2014). Routing protocol design for secure WSN: Review and open research issues. Journal of Network and Computer Applications., 41, 517–530. https://doi.org/10.1016/j.jnca.2014.02.008

    Article  Google Scholar 

  21. Gawdan, I., Chow, C. O., Zia, T., Sarhan, Q. (2011). Cross-layer based security solutions for Wireless Sensor Networks.

  22. Amouri, A., Morgera, S., Bencherif, M., & Manthena, R. (2018). A cross-layer, anomaly-based IDS for WSN and MANET. Sensors, 18(2), 651. https://doi.org/10.3390/s18020651

    Article  Google Scholar 

  23. Zhang, L., Restuccia, F., Melodia, T., & Puldlewski, S. (2018). Taming cross-layer attacks in wireless networks: A bayesian learning approach. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/tmc.2018.2864155

    Article  Google Scholar 

  24. Aryai, S., & Binu, G. S. (2017). Cross layer approach for detection and prevention of Sinkhole Attack using a mobile agent. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES). doi:https://doi.org/10.1109/cesys.2017.8321299.

  25. Resner, D., Medeiros de Araujo, G., & Fröhlich, A. A. (2017). Design and implementation of a cross-layer IoT protocol. Science of Computer Programming. https://doi.org/10.1016/j.scico.2017.08.008

    Article  Google Scholar 

  26. Sharavanan, P. T., Sridharan, D., & Kumar, R. (2018). A privacy preservation secure cross layer protocol design for IoT based wireless body area networks using ECDSA framework. Journal of Medical Systems. https://doi.org/10.1007/s10916-018-1050-2

    Article  Google Scholar 

  27. Wang, J., Jiang, S., & Fapojuwo, A. (2017). A protocol layer trust-based intrusion detection scheme for Wireless Sensor Networks. Sensors, 17(6), 1227. https://doi.org/10.3390/s17061227

    Article  Google Scholar 

  28. Ghugar, U., Pradhan, J., Bhoi, S. K., & Sahoo, R. R. (2019). LB-IDS: Securing wireless sensor network using protocol layer trust-based intrusion detection system. Journal of Computer Networks and Communications, 2019, 1–13. https://doi.org/10.1155/2019/2054298

    Article  Google Scholar 

  29. Beheshtiasl, A., & Ghaffari, A. (2019). Secure and trust-aware routing scheme in Wireless Sensor Networks. Wireless Personal Communications, 107, 1799–1814. https://doi.org/10.1007/s11277-019-06357-3

    Article  Google Scholar 

  30. Mahajan, H. B., Badarla, A., & Junnarkar, A. A. (2021). CL-IoT: Cross-layer Internet of Things protocol for intelligent manufacturing of smart farming. Journal of Ambient Intelligence and Humanized Computing, 12, 7777–7791. https://doi.org/10.1007/s12652-020-02502-0

    Article  Google Scholar 

  31. Kore, A., & Patil, S. (2020). IC-MADS: IoT enabled cross layer man-in-middle attack detection system for smart healthcare application. Wireless Personal Communications, 113, 727–746. https://doi.org/10.1007/s11277-020-07250-0

    Article  Google Scholar 

  32. Moosavi, S. R., Gia, T. N., Rahmani, A.-M., Nigussie, E., Virtanen, S., Isoaho, J., & Tenhunen, H. (2015). SEA: A secure and efficient authentication and authorization architecture for IoT-based healthcare using smart gateways. Procedia Computer Science, 52, 452–459. https://doi.org/10.1016/j.procs.2015.05.013

    Article  Google Scholar 

  33. Sharma, B., Bhatia, R. S., & Singh, A. K. (2016). A hierarchical virtual backbone construction protocol for mobile ad hoc networks. Journal of King Saud University - Computer and Information Sciences, 28(3), 276–288. https://doi.org/10.1016/j.jksuci.2014.06.020

    Article  Google Scholar 

  34. Rajeswari, S. R., & Seenivasagam, V. (2016). Comparative study on various authentication protocols in Wireless Sensor Networks. The Scientific World Journal, 2016, 1–16. https://doi.org/10.1155/2016/6854303

    Article  Google Scholar 

  35. Manoharan, R., & Sengathir, J. (2016). Erlang coefficient based conditional probabilistic model for reliable data dissemination in MANETs. Journal of King Saud University - Computer and Information Sciences, 28(3), 289–302. https://doi.org/10.1016/j.jksuci.2014.10.008

    Article  Google Scholar 

  36. Baskar, C., Balasubramaniyan, C., & Manivannan, D. (2016). Establishment of light weight cryptography for resource constraint environment using FPGA. Procedia Computer Science, 78, 165–171. https://doi.org/10.1016/j.procs.2016.02.027

    Article  Google Scholar 

  37. Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016). A secure data routing schema for WSN using Elliptic Curve Cryptography and homomorphic encryption. Journal of King Saud University - Computer and Information Sciences, 28(3), 262–275. https://doi.org/10.1016/j.jksuci.2015.11.001

    Article  Google Scholar 

  38. Moon, A. H., Iqbal, U., & Bhat, G. M. (2016). Implementation of node authentication for WSN using Hash chains. Procedia Computer Science, 89, 90–98. https://doi.org/10.1016/j.procs.2016.06.013

    Article  Google Scholar 

  39. Prathima, E. G., Prakash, T. S., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2016). SDAMQ: Secure data aggregation for multiple queries in Wireless Sensor Networks. Procedia Computer Science, 89, 283–292. https://doi.org/10.1016/j.procs.2016.06.060

    Article  Google Scholar 

  40. Jung, J., Moon, J., Lee, D., & Won, D. (2017). Efficient and security enhanced anonymous authentication with key agreement scheme in Wireless Sensor Networks. Sensors, 17(3), 644. https://doi.org/10.3390/s17030644

    Article  Google Scholar 

  41. Ferrag, M. A., Maglaras, L. A., Janicke, H., Jiang, J., & Shu, L. (2017). Authentication protocols for Internet of Things: A comprehensive survey. Security and Communication Networks, 2017, 1–41. https://doi.org/10.1155/2017/6562953

    Article  Google Scholar 

  42. Rouissi, N., & Gharsellaoui, H. (2017). Improved hybrid LEACH based approach for preserving secured integrity in Wireless Sensor Networks. Procedia Computer Science, 112, 1429–1438. https://doi.org/10.1016/j.procs.2017.08.103

    Article  Google Scholar 

  43. Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: Survey, challenges and solutions. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-017-0494-4

    Article  Google Scholar 

  44. Deepak, B. D., & Al-Turjman, F. (2019). A hybrid secure routing and monitoring mechanism in IoT-based Wireless Sensor Networks. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2019.102022

    Article  Google Scholar 

  45. Haseeb, K., Almogren, A., Islam, N., Ud Din, I., & Jan, Z. (2019). An energy-efficient and secure routing protocol for intrusion avoidance in IoT-based WSN. Energies, 12(21), 4174. https://doi.org/10.3390/en12214174

    Article  Google Scholar 

  46. Mathapati, M., Kumaran, T. S., Muruganandham, A., et al. (2020). Secure routing scheme with multi-dimensional trust evaluation for Wireless Sensor Network. Journal of Ambient Intelligence and Humanized Computing Ranking. https://doi.org/10.1007/s12652-020-02169-7

    Article  Google Scholar 

  47. Alhayani, B., Abbas, S. T., Mohammed, H. J., & Mahajan, H. B. (2021). Intelligent secured two-way image transmission using corvus corone module over WSN. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08484-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kore, A., Patil, S. Cross layered cryptography based secure routing for IoT-enabled smart healthcare system. Wireless Netw 28, 287–301 (2022). https://doi.org/10.1007/s11276-021-02850-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02850-5

Keywords

Navigation