Multi-core parallel BRSMF method for 2D3T radiation diffusion equations | Wireless Networks Skip to main content

Advertisement

Log in

Multi-core parallel BRSMF method for 2D3T radiation diffusion equations

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we firstly present a block robust structured multifrontal factorization method (in brief, BRSMF) using block diagonalonal structure of three temperature matrices, and then we propose a multi-core parallelization of BRSMF (in brief, MBRSMF) method based on the current mainstream parallel computer multi-core architecture. MBRSMF method parallelizes the nested dissection ordering, symbolic decomposition and numerical decomposition of BRSMF method, which aims to effectively solve three temperature linear systems on the multi-core computer. The multi-core parallelization of symbolic decomposition and numerical decomposition is based on the binary elimination tree. Theoretical analysis proves MBRSMF method has better load balancing capability. Numerical experiments show that the MBRSMF method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pei, W. B. (2007). The construction of simulation algorithms for fusion simulation. Journal of Communication in Computational Physics, 2(2), 255–270.

    Google Scholar 

  2. An, H. B., Mo, Z. Y., Xu, X. W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduct equations. Journal of Computational Physics, 228, 3268–3287.

    Article  MathSciNet  Google Scholar 

  3. Baldwin, C., Brown, P. N., Falgout, R. D., Graziani, F., & Jones, J. (1999). Iterative linear solver in a 2D radiation-hydrodynamics code: methods and performance. Journal of Computational Physics, 154, 1–40.

    Article  Google Scholar 

  4. Fu, S. W., Fu, H. Q., Shen, L. J., Huang, S. K., & Chen, G. N. (1998). A nine point difference scheme and iteration solving method for two-dimensional energy equations with three temperatures. Chinese Journal of Computational Physics, 15(4), 489–497.

    Google Scholar 

  5. Gu, T. X., Dai, Z. H., Hang, X. D., Fu, S. W., & Liu, X. P. (2005). High efficient algebraic solution methods for 2D energy system of equations with three temperature. Chinese Journal of Computational Physics, 22(6), 471–478.

    Google Scholar 

  6. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  7. Mo, Z. Y., Fu, S. W., & Shen, L. J. (2000). Parallel numerical simulation for 2-Dimension Three temperature hydrodynamics. Chinese Journal of Computational Physics, 17(6), 625–632.

    Google Scholar 

  8. Mo, Z. Y., Shen, L. J., & Wittum, G. (2004). Parallel adaptive multigrid algorithm for 2-D 3-T diffusion equations. Internaional Journal of Computer Mathematics, 81(3), 361–374.

    Article  MathSciNet  Google Scholar 

  9. Zhang, R. P., Yu, X. J., & Zhu, J. (2012). Numerical solution of coupled nonlinear Schrodingerequation by direct discontinuous Galerkin method. Chinese Physics and Letter, 29, 532–547.

    Google Scholar 

  10. Zhao, G. Z., Yu, X. J., & Zhang, R. P. (2013). An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate. Chinese Physics B, 22, 020202.

    Article  Google Scholar 

  11. Polizzi, E., & Sameh, A. (2006). A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Computing, 32, 177–194.

    Article  MathSciNet  Google Scholar 

  12. Sambavarama, S. R., Sarin, V., Sameh, A., & Grama, A. (2003). Multipole-based preconditioners for large sparse linear systems. Parallel Computing, 29, 1261–1273.

    Article  MathSciNet  Google Scholar 

  13. Wang, S., Li, X. S., Xia, J., Situ, Y., & de Hoop, M. V. (2013). Efficient scalable algorithms for solving dense linear systems with hierarchically semiseparable structures. SIAM Journal on Scientific Computing, 35, 519–544.

    Article  MathSciNet  Google Scholar 

  14. Xia, J., et al. (2012). Robust and efficient multifrontal solver for large discretized PDEs. In M. W. Berry (Ed.), High-performance science computational (pp. 199–217). New york: Springer.

    Chapter  Google Scholar 

  15. Xia, J. (2021). Multi-layer hierarchical structures. CSIAM Transaction of Applied Mathematics, 2, 263–296.

    Article  MathSciNet  Google Scholar 

  16. Zuo, X. Y., Mo, Z. Y., & Gu, T. X. (2013). An efficient block variant of robust structured multifrontal factorization method. Chinese Physics B, 22, 080201.

    Article  Google Scholar 

  17. Zuo, X. Y., Mo, Z. Y., Gu, T. X., Xu, X. W., & Zhang, A. Q. (2016). Multi-core parallel robust structured multifrontal factorization method for large discretized PDEs. Journal of Computational and Applied Mathematics, 296, 36–46.

    Article  MathSciNet  Google Scholar 

  18. Duff, I. S., & Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9, 302–325.

    Article  MathSciNet  Google Scholar 

  19. Liu, J. W. H. (1992). The multifrontal method for sparse matrix solution: theory and practice. SIAM Review, 34, 82–109.

    Article  MathSciNet  Google Scholar 

  20. Xia, J., & Gu, M. (2010). Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices. SIAM Journal of Matrix Analysis Application, 31, 2899–2920.

    Article  MathSciNet  Google Scholar 

  21. Xia, J., Liu, X. J., & de Hoop, M. V. (2016). Parallel randomized and matrix-free direct solvers for large structured dense linear systems. SIAM Journal on Scientific Computing, 38, 508–538.

    Article  MathSciNet  Google Scholar 

  22. Jiang, D., Wang, Y., Lv, Z., Wang, W., & Wang, H. (2020). An energy-efficient networking approach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Communications, 38(5), 928–941.

    Article  Google Scholar 

  23. Jiang, D., Wang, W., Shi, L., & Song, H. (2020). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 7(1), 507–519.

    Article  MathSciNet  Google Scholar 

  24. Xia, J., & Xin, Z. (2017). Effective and robust preconditioning of general SPD matrices via structured incomplete factorization. SIAM Journal of Matrix and Analysis Application, 38, 1298–1322.

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Wang, Y., & Xia, J. (2019). Fast structured Jacobi–Jacobi transforms. Mathematical Computation, 88, 1743–1772.

    Article  MathSciNet  Google Scholar 

  26. Ye, X., Xia, J., & Ying, L. (2020). Analytical low-rank compression via proxy point selection. SIAM Journal of Matrix and Analysis Application, 41, 1059–1085.

    Article  MathSciNet  Google Scholar 

  27. Liu, X., Xia, J., & de Hoop, M. V. (2020). Fast factorization update for general elliptic equations under multiple coefficient updates. SIAM Journal on Scientific Computing, 42, 1174–1199.

    Article  MathSciNet  Google Scholar 

  28. https://www.computerhope.com/jargon/m/multcore.htm

  29. Yasir Qadri, M., & Sangwine, S. J. (Eds.). (2013). Multicore technology; architecture, reconfiguration, and modeling (Vol. 28, Iss. 6). Portland: Reference and Research Book News.

  30. Load Balance and Parallel Performance, By Intel ISN, 8 Apr (2010)

  31. Jiang, D., Wang, Z., Huo, L., et al. (2020). A performance measurement and analysis method for software-defined networking of IoV. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3029076

  32. METIS, Family of Multilevel Partitioning Algorithms. http://glaros.dtc.umn.edu/ gkhome/views/metis

  33. Mo, Z. Y., Zhang, A. Q., Cao, X. L., Liu, Q. K., Xu, X. W., An, H. B., et al. (2010). JASMIN: A parallel software infrastructure for scientific computing. Frontier Computational Science of China, 4(4), 480–488.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and editors for their helpful and detailed suggestions for revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-hu Fan or Li-tao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is supported in partly by National Key Research and Development Program of China (2019YFE0126600), Major Project of Science and Technology of Henan Province (201400210300), Science and Technological Research of Key Projects of Henan Province (212102210393, 202102110121, 202102210352, 202102210368), Science and Technological Research of Kaifeng (2002001), Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions (20zx003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Xy., Wang, Qq., Ge, Q. et al. Multi-core parallel BRSMF method for 2D3T radiation diffusion equations. Wireless Netw 27, 4363–4373 (2021). https://doi.org/10.1007/s11276-021-02646-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02646-7

Keywords

Navigation