An adaptive threshold algorithm for offline Uyghur handwritten text line segmentation | Wireless Networks Skip to main content
Log in

An adaptive threshold algorithm for offline Uyghur handwritten text line segmentation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents an effective text-line segmentation algorithm and evaluates its performance on Uyghur handwritten text document images. Projection based adaptive threshold selection mechanism is implemented to detect and segment the text lines with different valued thresholds. The robustness of the proposed algorithm is admirable that experiments on 210 Uyghur handwritten document image including 2570 text lines got correct segmentation by 97.70% precision and 99.01% recall rate and outperformed the compared classic text-line segmentation algorithm on same evaluation set. Additionally, the proposed algorithm is tested on the public handwriting dataset and get 98.05% correct segmentation rate which is robust and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Saabni, R., Asi, A., & El-Sana, J. (2014). Text line extraction for historical document images. Pattern Recognition Letters, 35, 23–33.

    Article  Google Scholar 

  2. Razak, Z., Zulkiflee, K., Idris, M. Y. I., et al. (2008). Off-line handwriting text line segmentation: A review. International Journal of Computer Science and Network Security, 7, 12–20.

    Google Scholar 

  3. Yanikoglu, B., & Sandon, P. A. (1998). Segmentation of off-line cursive handwriting using Lunear programming. Pattern Recognition, 31(12), 1825–1833.

    Article  Google Scholar 

  4. Sanchez, A., Suarez, P. D., & Mello, C. A. B., et al. (2008). Text line segmentation in images of handwritten historical documents. In First workshops on image processing theory, tools and applications, 2008. IPTA 2008. IEEE.

  5. Basu, S., Chaudhuri, C., Kundu, M., et al. (2007). Text line extraction from multi-skewed handwritten documents. Pattern Recognition, 40(6), 1825–1839.

    Article  MATH  Google Scholar 

  6. Saabni, R., & El-Sana, J. (2011). Language-independent text lines extraction using seam carving. In 2011 international conference on document analysis and recognition, ICDAR 2011, Beijing, China. IEEE, 2011.

  7. Abliz, A., Simayi, W., Moydin, K., & Hamdulla, A. (2016). A survey on methods for basic unit segmentation in off-line handwritten text recognition. International Journal of Future Generation Communication and Networking, 9, 137–152.

    Article  Google Scholar 

  8. Li, Y., Zheng, Y., Doermann, D., et al. (2006). A new algorithm for detecting text line in handwritten documents. Proc Iwfhr La Baule, 2, 35–40.

    Google Scholar 

  9. Papavassiliou, V., Stafylakis, T., Katsouros, V., et al. (2010). Handwritten document image segmentation into text lines and words. Pattern Recognition, 43(1), 369–377.

    Article  MATH  Google Scholar 

  10. Bal, A., & Saha, R. (2016). An improved method for handwritten document analysis using segmentation, baseline recognition and writing pressure detection. Procedia Computer Science, 93, 403–415.

    Article  Google Scholar 

  11. Ptak, R., Żygadło, B., & Unold, O. (2017). Projection-based text line segmentation with a variable threshold. International Journal of Applied Mathematics and Computer Science, 27(1), 195–206.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169.

    Article  Google Scholar 

  13. Jiang, D., Huo, L., & Song, H. (2018). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 1(1), 1–12.

    MathSciNet  Google Scholar 

  14. Huo, L., Jiang, D., Zhu, X., et al. (2019). An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. International Journal of Communication Systems, 5, 1–12.

    Google Scholar 

  15. Jiang, D., Wang, W., Shi, L., et al. (2018). A compressive sensing-based approach toend-to-end network traffic reconstruction. IEEE Transactions on NetworkScience and Engineering, 5(3), 1–12.

    Google Scholar 

  16. Huo, L., Jiang, D., & Lv, Z. (2017). Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Computers and Electrical Engineering, 66, 316–331.

    Article  Google Scholar 

  17. Wang, F., Jiang, D., & Qi, S. (2019). An adaptive routing algorithm for integrated information networks. China Communications, 7(1), 196–207.

    Google Scholar 

  18. Lei, C., Jiang, D., Song, H., et al. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6(99), 15408–15419.

    Google Scholar 

  19. Sun, M., Jiang, D., Song, H., et al. (2017). Statistical resolution limit analysis of two closely spaced signal sources using Rao test. IEEE Access, 99, 1.

    Article  Google Scholar 

  20. Jiang, D., Huo, L., Lv, Z., et al. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 10, 3305–3319.

    Article  Google Scholar 

  21. Jiang, D., Wang, W., Shi, L., et al. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 5(3), 1–12.

    Google Scholar 

  22. Dingde, J., Liuwei, H., Ya, L., et al. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), e0194302.

    Article  Google Scholar 

  23. Ntirogiannis, K., Gatos, B., & Pratikakis, I. (2014). A combined approach for the binarization of handwritten document images. Pattern Recognition Letters, 35, 3–15.

    Article  Google Scholar 

  24. Wang, F., Jiang, D., Wen, H., et al. (2019). Adaboost-based security level classification of mobile intelligent terminals. The Journal of Supercomputing, 75, 7460–7478.

    Article  Google Scholar 

  25. Ohtsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  26. Huo, L., & Jiang, D. (2019). Stackelberg game-based energy-efficient resource allocation for 5G cellular networks. Telecommunication Systems, 3, 1–12.

    Google Scholar 

  27. Al-Dmour, A., & Zitar, R. A. (2016). Word extraction from Arabic handwritten documents based on statistical measures. International Review on Computers and Software, 11(5), 1–10.

    Google Scholar 

  28. Manmatha, R., & Rothfeder, J. L. (2005). A scale space approach for automatically segmenting words from historical handwritten documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1212–1225.

    Article  Google Scholar 

  29. Marti, U., & Bunke, H. (2002). The IAM-database: An english sentence database for off-line handwriting recognition. International Journal on Document Analysis and Recognition, 5, 39–46.

    Article  MATH  Google Scholar 

  30. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 99, 1.

    Google Scholar 

  31. Jiang, D., Wang, Y., Lv, Z., et al. (2019). Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/tii.2019.2930226.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (under Grant of 61462080 and 61662076) and Ph.D. Scientific Research Startup Project of Xinjiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askar Hamdulla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleyman, E., Hamdulla, A., Tuerxun, P. et al. An adaptive threshold algorithm for offline Uyghur handwritten text line segmentation. Wireless Netw 27, 3483–3495 (2021). https://doi.org/10.1007/s11276-019-02221-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02221-1

Keywords

Navigation