QoE in video streaming over wireless networks: perspectives and research challenges | Wireless Networks Skip to main content
Log in

QoE in video streaming over wireless networks: perspectives and research challenges

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The deployment of 3G/LTE networks and advancements in smart mobile devices had led to high demand for multimedia streaming over wireless network. The rapid increasing demand for multimedia content poses challenges for all parties in a multimedia streaming system, namely, content providers, wireless network service providers, and smart device makers. Content providers and mobile network service providers are both striving to improve their streaming services while utilizing advancing technologies. Smart device makers endeavor to improve processing power and displays for better viewing experience. Ultimately, the common goal shared by content providers, network service providers, and smart device manufactures is to improve the QoE for users. QoE is both an objective and a subjective metric measuring the streaming quality experience by end users. It may be measured by streaming bitrate, playback smoothness, video quality metrics like Peak to Signal Noise Ratio, and other user satisfaction factors. There have been efforts made to improve the streaming experiences in all these aspects. In this paper, we conducted a survey on existing literatures on QoE of video streaming to gain a deeper and more complete understanding of QoE quality metrics. The goal is to inspire new research directions in defining better QoE and improving QoE in existing and new streaming services such as adaptive streaming and 3D video streaming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sandvine Intelligent Broadband Networks. (2012). Global internet phenomena report: 2H 2012. http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf

  2. Strategy Analytics. (2013). Handset data traffic to grow over 300 % by 2017 to 21 Exabytes. https://www4.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=5385

  3. CNN. Sorry, America: Your wireless airwaves are full. http://money.cnn.com/2012/02/21/technology/spectrum_crunch/

  4. Chen, Y.-C., Lim, Y.-S., Gibbens, R. J., Nahum, E. M., Khalili, R., & Towsley, D. (2013). A measurement-based study of multiPath TCP performance over wireless networks. In Proceedings of ACM internet measurement conference (IMC) (pp. 455–468), October 23–25. Barcelona, Spain.

  5. Zohar, E., Cidon, I., & Mokryn, O. (2011). The power of prediction: Cloud bandwidth and cost reduction. In Proceedings of ACM SIGCOMM conference (pp. 86–97), August 15–19. Toronto, Canada.

  6. Liu, Y., Li, F., Guo, L., Shen, B., & Chen, S. (2013). Effectively minimizing redundant Internet streaming traffic to iOS devices. In Proceedings of 32nd IEEE conference on computer communications (INFOCOM) (pp. 250–254), April 14–19. Turin, Italy.

  7. Chen, J., Mahindra, R., Khojasterpour, M. A., Rangarajan, S., & Chiang, M. A scheduling framework for adaptive video delivery over cellular networks. In Proceedings the 19th annual international conference on Mobile computing and networking (pp. 389–400). Miami, FL, USA.

  8. Shen, S.-H., & AKella, A. An information-aware QoE-centric mobile video cache. In Proceedings of the 19th annual international conference on Mobile computing & networking (pp. 401–412). Miami, FL, USA.

  9. Zhang, W., Wen, Y., Chen, Z., & Khisti, A. (2013). QoE-driven cache management for HTTP adaptive bit rate streaming over wireless networks. IEEE Transactions on Multimedia, 15(6), 1431–1445.

    Article  Google Scholar 

  10. The Nielsen Company. (2013, September) “Binging” is the new viewing for over-the-top streamers. http://www.nielsen.com/us/en/newswire/2013/binging-is-the-new-viewing-for-over-the-top-streamers.html

  11. Xing, M., Xiang, S., & Cai, L. (2012). Rate adaptation strategy for video streaming over multiple wireless access networks. In Proceedings IEEE global communications conference (pp. 5745–5750).

  12. Pessemier, T. D., Moor, K. D., Joseph, W., Marez, L. D., & Martens, L. (2013). Quantifying the influence of rebuffering interruptions on the user’s quality of experience during mobile video watching. IEEE Transactions on Broadcasting, 59(1), 47–61.

    Article  Google Scholar 

  13. Yousaf, F. Z., Liebsch, M., Maeder, A., & Schmid, S. (2013). Mobile CDN enhancements for QoE-improved content delivery in mobile operator networks. IEEE Networks, 27(2), 14–21.

  14. Evensen1, K., Kaspar1, D., Griwodz, C., Halvorsen, P., Hansen, A. F.,& Engelstad, P. (2011). Improving the performance of quality-adaptive video streaming over multiple heterogeneous access networks. In Proceedings the second annual ACM conference on multimedia systems (pp. 57–68). Santa Clara, CA.

  15. Rosário, D., Cerqueira, E., Neto, A., Riker, A., Immich, R., & Curado, M. (2013). A QoE handover architecture for converged heterogeneous wireless networks. Wireless Networks, 19(8), 2005–2020.

    Article  Google Scholar 

  16. Liotta, A., Druda, L., Menkovski, V., & Exarchakos, G. (2012). Quality of experience management for video streams: The case of Skype. In Proceedings of the 10th international conference on advances in mobile computing and multimedia (pp. 84–92). Bali, Indonesia.

  17. Singh, S., Andrews, J. G., & De Veciana, G. (2012). Interference shaping for improved quality of experience for real-time video streaming. IEEE Journal on Selected Areas in Communications, 30(7), 1259–1269.

    Article  Google Scholar 

  18. Han, Z., Su, G. M., Kwasinski, A., Wu, M., & Ray Liu, K. J. (2006). Multiuser distortion management of layered video over resource limited downlink multicode-CDMA. IEEE Transactions on Wireless Communications, 5(11), 3056–3067.

    Article  Google Scholar 

  19. Vishwanath, A., Duttab, P., Chetlurb, M., Guptab, P., Kalyanaraman, S., & Ghosh, A. (2009). Perspectives on quality of experience for video streaming over WiMAX. ACM Mobile Computing and Communications, Review, 13(4), 15–25.

    Article  Google Scholar 

  20. Han, G.-M. Z., Wu, M., & Liu, K. J. (2006). A scalable multiuser framework for video over OFDM networks: Fairness and efficiency. IEEE Transactions on Circuits and Systems for Video Technology, 16(10), 1217–1231.

    Article  Google Scholar 

  21. Luo, H., Ci, S., Wu, D., Wu, J., & Tang, H. (2010). Quality-driven cross-layer optimized video delivery over LTE. IEEE Communication Magazine, 48, 102–109.

    Article  Google Scholar 

  22. Liu, T., Wang, Y., Boyce, J. M., Yang, H., & Wu, Z. (2009). A novel video quality metric for low bit-rate video considering both coding and packet-loss artifacts. IEEE Journal of Selected Topics in Signal Processing, 3(2), 280–293.

  23. Liao, Y., & Gibson, J. D. (2009). Rate-distortion based mode selection for video coding over wireless networkswith burst losses. In IEEE Proceedings 17th Int’l packet video workshop (pp. 1–10).

  24. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  25. Sullivan, G. J., Ohm, J., Han, W.-J., & Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.

    Article  Google Scholar 

  26. Wang, Y., & Zhu, Q. (1998). Error control and concealment for video communication: A review. Proceedings of the IEEE, 86, 974–997.

    Article  Google Scholar 

  27. Saparillaand, D.,& Ross, K. W. (2000). Optimal streaming of layered video. In Proceedings IEEE INFOCOM 2000 (pp. 737–746).

  28. Khalek, A. K., Caramanis, C., & Heath, R. W, Jr. (2012). A cross-layer design for perceptual optimization of H.264/SVC with unequal error protection. IEEE Journal on Selected Areas in Communications, 30(7), 1157–1171.

    Article  Google Scholar 

  29. Shen, Z., Luo, J., Zimmermann, R., & Vasilakos, A. V. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  Google Scholar 

  30. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  31. Xu, Y., Zhou, Y., & Chiu, D. (2014). Analytical QoE models for bit-rate switching in dynamic adaptive streaming systems. IEEE Transactions on Mobile Computing, 1536–1233.

  32. ParandehGheibi, A., Médard, M., Ozdaglar, A., & Shakkottai, S. (2011). Avoiding interruptions—A QoE reliability function for streaming media applications. IEEE Journal on Selected Areas in Communications, 29(5), 1064–1074.

    Article  Google Scholar 

  33. Oyman, O., & Singh, S. (2012). Quality of experience for HTTP adaptive streaming services. IEEE Communication Magazine, 50(4), 20–27.

    Article  Google Scholar 

  34. Singh, S., Oyman, O., Papathanssiou, A., Chatterjee, D., & Andrews, J. (2012). Video capacity and QoE enhancements over LTE. In Proceedings 2012 IEEE international conference on communications (pp. 7071–7076). Ottawa, Canada.

  35. Jin, Y., Wen, Y., Shi, G., Wang, G., & Vasilakos, A. V. (2012). CoDaaS: An experimental cloud-centric content delivery platform for user-generated contents. In IEEE international conference on computing, networking and communications (ICNC) (pp. 934–938).

  36. Yavari, A., Lungaro, P., & Segall, Z. (2013). Network efficient resource management for mobile streaming-based on quality of experience. In 2013 international conference on ICT convergence, Jeju Island, Korea.

  37. Du, Q., & Zhang, X. (2010). Statistical QoS provisionings for wireless unicast/multicast of multi-layer video streams. IEEE Journal on Selected Areas in Communications, 28(3), 420–433.

    Article  Google Scholar 

  38. Lewcio, B., Möller, S., & Vidale, P. (2011). A method for seamless Codec changeover during active video calls. In Proceedings IEEE 16th international workshop on computer aided modeling and design of communication links and networks (pp. 133–137). Kyoto, Japan.

  39. Dutta, P., Seetharam, A., Arya1, V., Chetlur, M., Kalyanaraman, S., & Kurose, J. (2012). On managing quality of experience of multiple video streams in wireless networks. In Proceedings IEEE INFOCOM 2012 (pp. 1242–1250). Orlando, FL, USA.

  40. Claeys, M., Latré, S., Famaey, J., & Turck, F. D. (2014). Design and evaluation of a self-learning HTTP adaptive video streaming client. IEEE Communications Letters, 18(4), 716–719.

    Article  Google Scholar 

  41. Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182.

    Article  Google Scholar 

  42. Jiang, T., Wang, H., & Vasilakos, A. V. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  43. Zhou, L., Wang, H., Lian, S., Zhang, Y., Vasilakos, A. V., & Jing, W. (2011). Availability-aware multimedia scheduling in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 60(3), 1161–1170.

    Article  Google Scholar 

  44. Liotta, A., Mocanu, D.C., Menkovski, V., Cagnetta, L., & Exarchakos, G. (2013). Instantaneous video quality assessment for lightweight devices. In International conference on advances in mobile computing & multimedia, Vienna, Austria, December 2013.

  45. Essaili1, A. E., Steinbach, E., Munaretto, D., Thakolsri, S., & Kellerer, W. (2011). QoE-driven resource optimization for user generated video content in next generation mobile networks. In Proceedings 18th IEEE international conference on image processing (pp. 913–916). Brussels, Belguim.

  46. Fu, B., Kunzmann, G., Wetterwald, M., Corujo, D., & Costa, R. (2013). QoE-aware traffic management for mobile video delivery. In Proceedings 2013 IEEE international conference on communications workshops (pp. 652–656). Budapest.

  47. Fu, B., Staehle, D., Kunzmann, G., Steinbach, E., & Kellerer, W. (2013). QoE-aware priority marking and traffic management for H.264/SVC-based mobile video delivery. In Proceedings the 8th ACM workshop on performance monitoring and measurement of heterogeneous wireless and wired networks (pp. 173–180). Barcelona, Spain.

  48. Goudarzi, P., & Hosseinpour, M. (2010). Video transmission over MANETs with enhanced quality of experience. IEEE Transactions on Consumer Electronics, 56(4), 2217–2225.

    Article  Google Scholar 

  49. Jailton, J., Carvalho, T., Valente, W., Natalino, C., Francês, R., & Dias, K. (2013). A quality of experience handover architecture for heterogeneous mobile wireless multimedia networks. IEEE Communications Magazine, 51(6), 152–159.

    Article  Google Scholar 

  50. Foerster, J., Oyman, O., Liao, Y., Rehan, M., & Taie, W. (2012). Enhanced adaptive streaming over LTE-advanced wireless networks. In Proceedings 46th Asilomar conference on signals, systems and computers (pp. 915–919). Pacific Grove, CA.

  51. Lee, J.-S., De Simone, F., Ebrahimi, T., Ramzan, N., & Izquierdo, E. (2012). Quality assessment of multidimensional video scalability. IEEE Communications Magazine, 50, 38–46.

    Article  Google Scholar 

  52. Feghali, R., Speranza, F., Wang, D., & Vincent, A. (2007). Video quality metric for bit rate control via joint adjustment of quantization and frame rate. IEEE Transactions on Broadcasting, 53(1), 441–446.

    Article  Google Scholar 

  53. Kim, C. S., Jin, S. H., Seo, D. J., & Ro, Y. M. (2008). Measuring video quality on full scalability of H.264/AVC scalable video coding. IEICE Transactions on Communications, E91-B(5), 1269–1278.

    Article  Google Scholar 

  54. Sohn, H., Yoo, H., De Neve, W., Kim, C. S., & Ro, Y. M. (2010). Full reference video quality metric for fully scalable and mobile SVC content. IEEE Transactions on Broadcasting, 56(3), 269–280.

    Article  Google Scholar 

  55. Ma, Z., Xu, M., Ou, Y.-F., & Wang, Y. (2012). Modeling of rate and perceptual quality of compressed video as functions of frame rate and quantization stepsize and its applications. IEEE Transactions on Circuits and Systems for Video Technology, 22(5), 671–682.

    Article  Google Scholar 

  56. Ou, Y.-F., Ma, Z., Liu, T., & Wang, Y. (2011). Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 21(3), 286–298.

    Article  Google Scholar 

  57. Ou, Y.-F., Xue, Y., & Wang, Y. (2014). Q-STAR: A perceptual video quality model considering impact of spatial, temporal, and amplitude resolutions. IEEE Transactions on Image Processing, 23(6), 2473–2486.

    Article  MathSciNet  Google Scholar 

  58. Hu, H., Zhu, X., Wang, Y., Pan, R., Zhu, J., & Bonomi, F. (2013). Proxy-based multi-stream scalable video adaptation over wireless networks using subjective quality and rate models. IEEE Transactions on Multimedia, 15(7), 1638–1652.

    Article  Google Scholar 

  59. Moorthy, A. K., Seshadrinathan, K., Soundararajan, R., & Bovik, A. C. (2010). Wireless video quality assessment: A study of subjective scores and objective algorithms. IEEE Transactions on Circuits and Systems for Video Technology, 20(4), 513–516.

    Article  Google Scholar 

  60. Raake, A., Garcia, M. N., Moller, S., Berger, J., Kling, F., List, P., et al. (2008). T-V-model: Parameter-based prediction of IPTV quality. In Proceedings on IEEE international conference on acoustics, speech, and signal processing.

  61. Garcia, M. N., Raake, A., & List, P. (2008). Towards content-related features for parametric video quality prediction of IPTV services. In Proceedings on IEEE international conference on acoustics, speech, and signal processing (pp. 757–760).

  62. Garcia, M.-N., Schleicher, R., & Raake, A. (2010). Towards a content-based parametric video quality model for IPTV. In Proceedings of 3rd international workshop on perceptual quality of systems (pp. 20–25).

  63. Argyropoulos, S., Raake, A., Garcia, M.-N., & List, P. (2011). No-reference bit stream model for video quality assessment of H.264/AVC video based on packet loss visibility. In Proceedings on IEEE international conference on acoustics, speech, and signal processing (pp. 1169–1172).

  64. Yamagishi, K., & Hayashi, T. (2006). Opinion model for estimating video quality of videophone services. In Proceedings on IEEE global communications conference (pp. 1–5).

  65. Hayashi, T., Yamagishi, K., Tominaga, T., & Takahashi, A. (2007). Multimedia quality integration function for videophone services. In Proceedings on IEEE global communications conference (pp. 2735–2739).

  66. Belmudez, B., & Möoller, S. (2010). Extension of the G.1070 video quality function for the MPEG2 video codec. In Proceedings of 2nd international workshop on quality of multimedia experience.

  67. Yamagishi, K., & Hayashi, T. (2008). Parametric packet-layer model for monitoring video quality of IPTV services. In Proceedings on IEEE international conference on communications.

  68. You, F., Zhang, W., & Xiao, J. (2009). Packet loss pattern and parametric video quality model for IPTV. In Proceedings on IEEE/ACIS international conference on computer and information science.

  69. Joskowicz, J., Sotelo, R., & Ardao, J. C. L. (2013). Towards a general parametric model for perceptual video quality estimation. IEEE Transactions on Broadcasting, 59(4), 569–579.

    Article  Google Scholar 

  70. Khan, A., Sun, L., Jammeh, E., & Ifeachor, E. (2010). Quality of experience-driven adaptation scheme for video applications over wireless networks. IET Communications, 4(11), 1337–1347.

    Article  Google Scholar 

  71. Khan, A., Sun, L., & Ifeachor, E. (2012). QoE prediction model and its application in video quality adaptation over UMTS networks. IEEE Transactions on Multimedia, 14(2), 431–442.

    Article  Google Scholar 

  72. Zhang, X., Xu, Y., Hu, H., Liu, Y., Guo, Z., & Wang, Y. (2013). Modeling and analysis of skype video calls: Rate control and video quality. IEEE Transactions on Multimedia, 15(6), 1446–1457.

    Article  Google Scholar 

  73. Gustafsson, J., Heikkilä, G., & Pettersson, M. (2008). Measuring multimedia quality in mobile networks with an objective parametric model. In Proceedings on IEEE international conference on image processing (pp. 405–408).

  74. Saygili, G., Gurler, C. G., & Tekalp, A. M. (2011). Evaluation of asymmetric stereo video coding and rate scaling for adaptive 3D video streaming. IEEE Transactions on Broadcasting, 57(2), 593–601.

    Article  Google Scholar 

  75. Stelmach, L., Tam, W. J., Meegan, D., & Vincent, A. (2000). Stereo image quality: Effects of mixed spatiotemporal resolution. IEEE Transactions on Circuits and Systems for Video Technology, 10(2), 188–193.

    Article  Google Scholar 

  76. Brust, H., Smolic, A., Mueller, K., Tech, G., & Wiegand, T. (2009). Mixed resolution coding of stereoscopic video for Mobile devices. In IEEE 3DTV conference.

  77. Tam, W. J. (2007). Image and depth quality of asymmetrically coded stereoscopic video for 3D-TV. JVT-W094, San Jose, CA, April 2007.

  78. Aksay, A., Bilen, C., Kurutepe, E., Ozcelebi, T., Akar, G. B., Civanlar, R., et al. (2006). Temporal and spatial scaling for stereoscopic video compression. In Proceedings on EUSIPCO (pp. 4–8). Florence, Italy.

  79. Smolic, A., Mueller, K., Stefanoski, N., Ostermann, J., Gotchev, A., Akar, G. B., et al. (2007). Coding algorithms for 3DTV—A Survey. IEEE Transactions on Circuits and Systems for Video Technology, 17(11), 1606–1621.

    Article  Google Scholar 

  80. Yan, T., An, P., Shen, L., Zhang, Q., & Zhang, Z. (2009). Rate control algorithm for multi-view video coding based on correlation analysis. In Symposium on photonics and optoelectronics, 2009.

  81. Fehn, C., Kauff, P., de Beeck, M. O., Ernst, F., Ijsselsteijn, W., Pollefeys, M., et al. (2002). An evolutionary and optimized approach on 3D-TV. In Proceedings on international broadcast conference (pp. 357–365), Amsterdam, The Netherlands, September 2002.

  82. Fehn, C. (2004). 3D-TV using depth-image-based rendering (DIBR). In Proceedings on picture coding symposium, San Francisco, CA, USA.

  83. Yuan, H., Chang, Y., Huo, J., Yang, F., & Lu, Z. (2011). Model-based joint bit allocation between texture videos and depth maps for 3D video coding. IEEE Transactions on Circuits and Systems for Video Technology, 21(4), 485–497.

    Article  Google Scholar 

  84. Liu, Y., Huang, Q., Ma, S., Zhao, D., Gao, W., Ci, S., & Tang, H. (2011). A novel rate control technique for multi-view video plus depth based 3D video coding. IEEE Transactions on Broadcasting, 57(2), 562–571.

    Article  Google Scholar 

  85. Cheung, G., Velisavljevic, V., & Ortega, A. (2011). On dependent bit allocation for multi-view image coding with depth-image-based rendering. IEEE Transactions on Image Processing, 20(11), 3179–3194.

    Article  MathSciNet  Google Scholar 

  86. Norkin, A., Aksay, A., Bilen, C., Akar, G., Gotchev, A., & Astola, J. (2006). Schemes for multiple description coding of stereoscopic video. In B. Gunsel, A. Jain, A. M. Tekalp, & B. Sankur (Eds.), Multimedia content representation, classification and security (Vol. 4105, pp. 730–737). Berlin: Springer.

  87. Karim, H. A., Hewage, C., Worrall, S., & Kondoz, A. (2008). Scalable multiple description video coding for stereoscopic 3D. IEEE Transactions on Consumer Electronics, 54(2), 745–752.

    Article  Google Scholar 

  88. Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A survey on service-oriented network virtualization toward convergence of networking and cloud computing. IEEE Transactions on Network and Service Management, 9(4), 373–392.

    Article  Google Scholar 

  89. Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In IEEE/ACM international conference on utility and cloud computing (pp. 83–90).

  90. Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.

    Article  Google Scholar 

  91. Rahimi, M. R., Venkatasubramanian, N., & Vasilakos, A. V. (2013). MuSIC: Mobility-aware optimal service allocation in mobile cloud computing. In IEEE international conference on cloud computing (pp. 75–82).

  92. Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  93. Li, P., Guo, S., Yu, S., & Vasilakos, A. V (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceeding of INFOCOM, 2012 (pp. 100–108).

  94. Masnick, B., & Wolf, J. (1967). On linear unequal error protection codes. IEEE Transactions on Information Theory, 13(4), 600–607.

    Article  MATH  Google Scholar 

  95. Pavlushkov, V., Johannesson, R., & Zyablov, V. (2006). Unequal error protection for convolutional codes. IEEE Transactions on Information Theory, 52(2), 700–708.

    Article  MathSciNet  MATH  Google Scholar 

  96. Gong, C., Yue, G., & Wang, X. (2011). Message-wise unequal error protection based on low-density parity-check codes. IEEE Transactions on Communications, 59(4), 1019–1030.

    Article  Google Scholar 

  97. Razavi, R., Fleury, M., Altaf, M., Sammak, H., & Ghanbari, M. (2009). H.264 video streaming with data-partitioning and growth codes. In IEEE international conference on image processing (pp. 909–912).

  98. Nazir, S., Stankovic, V., & Vukobratovic, D. (2011). Unequal error protection for data partitioned H.264/AVC video streaming with raptor and random linear codes for DVB-H networks. In IEEE international conference on multimedia and expo (ICME) (pp. 1–6).

  99. Huo, Y., El-Hajjar, M., & Hanzo, L. (2013). Inter-layer FEC aided unequal error protection for multilayer video transmission in mobile TV. IEEE Transactions on Circuits and Systems for Video Technology, 23(9), 1622–1634.

    Article  Google Scholar 

  100. Vukobratovic, D. (2012). Unequal error protection random linear coding strategies for erasure channels. IEEE Transactions on Communications, 60(5), 1243–1252.

    Article  Google Scholar 

  101. Zhang, X., Peng, X., Wu, D., Porter, T., & Haywood, R. (2009). A hierarchical unequal packet loss protection scheme for robust H.264/AVC transmission. In IEEE consumer communications and networking conference (pp. 1–5).

  102. Nazir, S., Stankovic, V., & Vukobratovic, D. (2011). Expanding Window random linear codes for data partitioned H.264 video transmission over DVB-H network. In IEEE international conference on image processing (pp. 2205–2208).

  103. Stockhammer, T., & Bystrom, M. (2004). H.264/AVC data partitioning for mobile video communication. IEEE International Conference on Image Processing, 1, 545–548.

    Article  Google Scholar 

  104. Nazir, S., Stanković, V., Andonović, I., & Vukobratović, D. (2012). Application layer systematic network coding for sliced H.264/AVC video streaming. Advances in Multimedia, 2012, 1–9.

  105. Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H. 264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.

    Article  Google Scholar 

  106. Dung, H., & Vafi, S. (2013). An adaptive unequal error protection based on motion energy of H.264/AVC video frames. In IEEE conference on wireless communications and networking conference (pp. 4594–4599).

  107. Hewage, C. T. E. R., & Martini, M. G. (2013). Quality of experience for 3D video streaming. IEEE Communications Magazine, 51, 101–107.

    Article  Google Scholar 

  108. Su, G.-M., Lai, Y.-L., Kwasinski, A., & Wang, H. (2013). 3D visual communications. London: Wiley.

    Google Scholar 

  109. Zhu, W., Ding, W., Xu, J., Shi, Y., & Yin, B. (2014). Screen content coding based on HEVC framework. IEEE Transactions on Multimedia, 16(5), 1316–1326.

    Article  Google Scholar 

  110. Sugawara, M., & Masaoka, K. (2013). UHDTV image format for better visual experience. Proceedings of IEEE, 101(1), 8–19.

    Article  Google Scholar 

  111. Park, D. S., Choi, S. Y., Lee, H. Y., Kim, Y. T., Hong, J. Y., & Kim, C. Y. (2013). A new wide-gamut RGB primary set and efficient color encoding methods for ultrahigh-definition television (UHDTV). Proceedings of IEEE, 101(1), 18–30.

    Article  Google Scholar 

  112. Sharma, G., Wu, W., & Dalal, E. N. (2005). The CIEDE2000 color-difference formula: Implementation ntes, supplementary test data, and mathematical observations. Color Research and Application, 30(1), 21.

    Article  Google Scholar 

  113. Salmon, R., Borer, T., Pindoria, M., Price, M., & Sheikh, A. (2014). Higher frame rates for television. SMPTE Motion Imaging Journal, 123(4), 50–55.

  114. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., & Ward, G. (2010). High dynamic range imaging: Acquisition, display, and image-based lighting. Burlington: Morgan Kaufmann.

    Google Scholar 

  115. Miller, S., Nezamabadi, M., & Daly, S. (2013). Perceptual signal coding for more efficient usage of bit codes. SMPTE Motion Imaging Journal, 122(4), 52–59.

  116. Mantiuk, R., Kim, K. J., Rempel, A. G., & Heidrich, W. (2011). HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Transactions on Graphics, 30(4), 40.

    Article  Google Scholar 

  117. Santos, M. A., Villalon, J., & Orozco-Barbosa, L. (2012). A novel QoE-aware multicast mechanism for video communications over IEEE 802.11 WLANs. IEEE Journal on Selected Areas in Communications (JSAC), 30(7), 1205–1214.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Ming Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, GM., Su, X., Bai, Y. et al. QoE in video streaming over wireless networks: perspectives and research challenges. Wireless Netw 22, 1571–1593 (2016). https://doi.org/10.1007/s11276-015-1028-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1028-7

Keywords

Navigation