Performance analysis of a multihop relay network using distributed Alamouti code | Wireless Networks Skip to main content
Log in

Performance analysis of a multihop relay network using distributed Alamouti code

  • Published:
Wireless Networks Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we apply the classical Alamouti coding technique in a distributed and cascaded fashion to multihop relay networks where relays perform the decode-and-forward (DF) protocol at each relay stage. The considered system consists of two antennas at the source, two single-antenna relays at each relay stage and one antenna at the destination. The source transmits at each coding step two symbols according to the Alamouti code, to the first relay stage where each relay decodes the two symbols independently. The two relays of each relay stage behave like the two antennas of the source and transmit the two estimated symbols to the next relay stage until the destination using distributed Alamouti code. We obtain a closed form expression for the outage probability of the N-hop relay network and derive a tight analytical upper bound for the bit error probability at the destination, by considering the two-hop case firstly and then generalizing for the N-hop networks. We also show that DF protocol provides better bit error performance compared to the amplify-and-forward protocol previously considered in the literature for N-hop relay networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative communication in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MATH  MathSciNet  Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2003). Distributed space–time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MATH  Google Scholar 

  3. Boyer, J., Falconer, D. D., & Yanikomeroglu, H. (2004). Multihop diversity in wireless relaying channels. IEEE Transactions on Communications, 52(10), 1820–1830.

    Article  Google Scholar 

  4. Farhadi, G., & Beaulieu, N. C. (2007). Selective decode-and-forward relaying scheme for multi-hop diversity transmission systems. IEEE global telecommunications conference (GLOBECOM) (pp. 4385–4390).

  5. Morgado, E., Mora-Jimnez, I., Vinagre, J. J., Ramos, J., & Caamao, A. J. (2010). End-to-end average BER in multihop wireless networks over fading channels. IEEE Transactions on Wireless Communications, 9(8), 2478–2487.

    Article  Google Scholar 

  6. Ikki, S. S., & Assa, S. (2012). Multihop wireless relaying systems in the presence of cochannel interferences: Performance analysis and design optimization. IEEE Transactions on Vehicular Technology, 61(2), 566–573.

    Article  Google Scholar 

  7. Soithong, T., Aalo, V. A., Efthymoglou, G. P., & Chayawan, C. (2011). Performance of multihop relay systems with co-channel interference in Rayleigh fading channels. IEEE Communications Letters, 15(8), 836–838.

    Article  Google Scholar 

  8. Soithong, T., Aalo, V. A., Efthymoglou, G. P., & Chayawan, C. (2012). Outage analysis of multihop relay systems in interference-limited Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 61(3), 1451–1457.

    Article  Google Scholar 

  9. Tam, N. T. B., Tran-Thien, T., Do-Hong, T., & Bao, V. N. Q. (2010). Performance analysis of decode-and-forward relaying for multi-hop alamouti transmission over Rayleigh fading channels. In Proceedings of international conference on advanced technology for communications (pp. 195–200).

  10. Yindi, J., & Hassibi, B. (2006). Distributed space–time coding in wireless relay networks. IEEE Transactions on Wireless communications, 5(12), 3524–3536.

    Article  Google Scholar 

  11. Vaze, R., & Heath, R. W. (2008). Maximizing reliability in multi-hop wireless networks. In IEEE international symposium on information theory (pp. 11–15).

  12. Vaze, R., & Heath, R. W. (2013). Cascaded orthogonal spacetime block codes for wireless multi-hop relay networks. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2013-113.

    Google Scholar 

  13. Yuen, C., Chin, W. H., Guan, Y. L., Chen, W., & Tee, T. (2008). Bi-directional multi-antenna relay communications with wireless network coding. In IEEE vehicular technology conference (pp. 1385–1388).

  14. Eslamifar, M., Yuen, C., Chin, W. H., & Guan, Y. L. (2010). Max–min antenna selection for bi-directional multi-antenna relaying. In IEEE vehicular technology conference (pp. 1–5).

  15. Eslamifar, M., Chin, W. H., Yuen, C., & Guan, Y. L. (2012). Performance analysis of two-step bi-directional relaying with multiple antennas. IEEE Transactions on Wireless communications, 11(12), 4237–4242.

    Article  Google Scholar 

  16. Duong, T. Q., Yuen, C., Zepernick, H., & Lei, X. (2010). Average sum-rate of distributed alamouti space–time scheme in two-way amplify-and-forward relay networks. In IEEE global telecommunications conference (GLOBECOM) (pp. 79–83).

  17. Kuek, S. K., Yuen, C., & Chin, W. H. (2008). Four-node relay network with bi-directional traffic employing wireless network coding with pre-cancellation. In IEEE vehicular technology conference (pp. 1201–1205).

  18. Scutari, G., & Barbarossa, S. (2005). Distributed space–time coding for regenerative relay networks. IEEE Transactions on Information Theory, 4(5), 2387–2399.

    Google Scholar 

  19. Anghel, P. A., & Kaveh, M. (2006). Distributed space–time cooperative systems with regenerative relays. IEEE Transactions on Wireless Communications, 5(11), 3130–3141.

    Article  Google Scholar 

  20. Alamouti, S. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  21. Simon, M. K., & Alouini, M. S. (2005). Digital communications over fading channels (2nd ed.). London: Wiley.

    Google Scholar 

  22. Lee, H., Andrews, J. G., & Powers, E. J. (2008). Information outage probability and diversity order of symmetric coordinate interleaved orthogonal designs. IEEE Transactions on Wireless Communications, 7(5), 1501–1506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Aydın.

Appendix

Appendix

The diversity order is obtained by [22]

$$\begin{aligned} D = \lim \limits _{\overline{\gamma } \rightarrow \infty } -\frac{log(P_{out} (\gamma _{out}))}{log(\overline{\gamma })} \end{aligned}$$
(54)

where the outage probability is given by

$$\begin{aligned} P_{out}(\gamma _{out})=1-\left( \left(1+\frac{\gamma _{out}}{\overline{\gamma }}\right) e^{-\gamma _{out}/\overline{\gamma }}\right) ^{2N-1}. \end{aligned}$$
(55)

After some manipulation, we get

$$\begin{aligned} D = \lim \limits _{\overline{\gamma } \rightarrow \infty } - \frac{log\left( e^{\gamma _{out} (2N-1)/\overline{\gamma }} -\left( 1+\frac{\gamma _{out}}{\overline{\gamma }} \right) ^{2N-1}\right) }{log(\overline{\gamma })}. \end{aligned}$$
(56)

We cannot find the limit directly, so we need to use Taylor series expansion to have a proper expression. We know that the Taylor series expansions are given by

$$\begin{aligned} e^{\gamma _{out} (2N-1)/\overline{\gamma }}&= 1+\frac{(2N-1)\gamma _{out}}{ \overline{\gamma }} +\frac{1}{2}\left( \frac{(2N-1)\gamma _{out}}{\overline{\gamma }}\right) ^2 +O\left( \frac{1}{\overline{\gamma }^3}\right) , \\ \left( 1+\frac{\gamma _{out}}{\overline{\gamma }}\right) ^{(2N-1)}&= 1+\frac{(2N-1)\gamma _{out}}{\overline{\gamma }} +\frac{(2N-1)(2N-2)\gamma _ {out}}{2\overline{\gamma }^2} +O\left( \frac{1}{\overline{\gamma }^3}\right) , \end{aligned}$$
(57)

where \(O(\cdot)\) represents omitted higher-order terms in power series. When we use (57) in (56) we have

$$\begin{aligned} D = \lim \limits _{\overline{\gamma } \rightarrow \infty } - \frac{log\left( \frac{1}{\overline{\gamma }^2} \left( C_1+O\left( \frac{1}{\overline{\gamma }}\right) \right) \right) }{log(\overline{\gamma })}, \end{aligned}$$
(58)

where \(C_1\) is a constant. Then we have

$$\begin{aligned} D&= \lim \limits _{\overline{\gamma } \rightarrow \infty } - \frac{-2 log\left( {\overline{\gamma }}\right) + log\left( C_1+O\left( \frac{1}{\overline{\gamma }}\right) \right) }{log(\overline{\gamma })} \\&= 2 + \lim \limits _{\overline{\gamma } \rightarrow \infty } - \frac{log\left( C_1+O\left( \frac{1}{\overline{\gamma }}\right) \right) }{log (\overline{\gamma })} \\&= 2. \end{aligned}$$
(59)

So it is proved that the diversity order of the system is 2. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, İ., Aygölü, Ü. Performance analysis of a multihop relay network using distributed Alamouti code. Wireless Netw 21, 217–226 (2015). https://doi.org/10.1007/s11276-014-0781-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0781-3

Keywords

Navigation