Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration | Water Resources Management
Skip to main content

Advertisement

Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Lake Pamvotis, NW Greece is a shallow Mediterranean eutrophic lake that has changed drastically over the past 50 years. Strong effects, resulted mainly from anthropogenic causes, in the hydrological regime are shown for this area using long term hydrological data and a GIS system for extracting land cover/use changes. A set of aerial imagery acquired in 1945 through 2002 were used to monitor and assess the spatial and temporal changes in land cover/use, focused mainly on the lake’s surface area and its surrounding ecosystem (Natura 2000 area). The significance of the changes in land cover/use distribution within Pamvotis wetland is further discussed depicting the role of the anthropogenic influence on the fragile ecosystem that resulted in the shrinkage of lake’s habitats extent. The purpose of this analysis was to examine the long-term changes on macrophyte community composition, species occurrence and relative abundance with water quality and water level changes over the past century, using historical data, aerial photos and GIS techniques. The results showed that for the last 25 years annual water level fluctuation ranged from 70 to 159 cm. Water level starts decreasing in mid June and increasing again gradually from November until March–April. Intra annual water level fluctuation seems to be affected by land use for agricultural purpose through intensive irrigation and the summer drought as well. A dramatic decline of the submerged vegetation is apparent mainly attributed to anthropogenic pressures. Regarding the land cover/use changes, the most notable and significant alterations are concerning the urban development around the lake, the disappearance of wet meadows and the extension of reed beds. Finally it seems that water budget data as well as the response of the key eutrophication parameters are affected from both hydrological alterations and point/non-point pollution sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. APHA, Washington

    Google Scholar 

  • Beklioglu M, Tan C (2008) Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundam Appl Limnol 17:105–118. doi:10.1127/1863-9135/2008/0171-0105

    Article  Google Scholar 

  • Beklioglu M, Ince Ö, Tüzün I (2003) Restoration of Eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia 489:93–105. doi:10.1023/A:1023466629489

    Article  Google Scholar 

  • Beklioglu M, Romo S, Kagalou I, Ouintana X, Becares E (2007) State of the art in the functioning of shallow Mediterranean lakes. Workshop conclusions. Hydrobiologia 584:317–326

    Article  Google Scholar 

  • Carpenter S, Ludwig D, Brock W (1999) Management of eutrophication for lakes subject to irreversible change. Ecol Appl 9:751–771. doi:10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

    Article  Google Scholar 

  • Chow-Fraser P (2005) Ecosystem response to changes in water level of Lake Ontario marshes: lessons from the restoration of Cootes Paradise marsh. Hydrobiologia 539:189–204. doi:10.1007/s10750-004-4868-1

    Article  Google Scholar 

  • Chow-Fraser P, Lougheed V, Thiec V, Grosbie B, Simser L, Lord J (1998) Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded costal wetland of Lake Ontario. Wetlands Ecol Manag 6:19–42. doi:10.1023/A:1008491520668

    Article  Google Scholar 

  • Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuation in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509:23–27. doi:10.1023/B:HYDR.0000008595.14393.77

    Article  Google Scholar 

  • Crisman T, Mitraki C, Zalidis G (2005) Integrating vertical and horizontal approaches for management of shallow lakes and wetlands. Ecol Eng 24:379–389. doi:10.1016/j.ecoleng.2005.01.006

    Article  Google Scholar 

  • Egertson CJ, Kopaska JA, Downing JA (2004) A century of change in macrophyte composition. Hydrobiologia 524:145–156. doi:10.1023/B:HYDR.0000036129.40386.ce

    Article  Google Scholar 

  • ESRI (2002) ArcGIS 8.3. Environmental Systems Research Institute, Redlands, California, USA

  • Feidas H, Makrogiannis T, Bora-Senta E (2004) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1995–2001. Theor Appl Climatol 79:185–208. doi:10.1007/s00704-004-0064-5

    Article  Google Scholar 

  • Gafny S, Gasith A (1999) Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantage of a window of opportunity. Aquat Bot 62:249–267. doi:10.1016/S0304-3770(98)00097-7

    Article  Google Scholar 

  • Ganiatsas KA (1970) Flora and vegetation of Lake Pamvotis. Ipirotiki Estia, Thessaloniki, Greece, 20 pp

  • Gulati R, Pires DM, Van Donk E (2008) Lake Restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38:233–247. doi:10.1016/j.limno.2008.05.008

    Google Scholar 

  • Havens KE, James RT, East TL, Smith VH (2003) N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ Pollut 122:379–390. doi:10.1016/S0269-7491(02)00304-4

    Article  Google Scholar 

  • Horppila J, Nurminen L (2001) The effect of an emergent macrophyte (Typha augustifolia) on sediment resuspension in a shallow north temperate lake. Freshw Biol 46:1447–1455. doi:10.1046/j.1365-2427.2001.00765.x

    Article  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethyl alcohol as extraction solvent. Arch Hydrobiol 109:445–454

    Google Scholar 

  • Kagalou I, Tsimarakis G, Patsias A (2001) Phytoplankton dynamics and physical–chemical features of a shallow lake (Lake Pamvotis-Greece). Fresenius Environ Bull 10(12):845–849.

    Google Scholar 

  • Kagalou I, Papastergiadou E, Tsimarakis G, Petridis D (2003) Evaluation of the trophic state of Lake Pamvotis, Greece. A shallow urban lake. Hydrobiologia 506–509:745–752. doi:10.1023/B:HYDR.0000008603.69847.9e

    Article  Google Scholar 

  • Kati V, Mani P, von Helversen O, Willemse F, Elsner E, Dimopoulos P (2006) Human land use threatens endemic wetland species: the case of Chorthippus lacustris in Epirus, Greece. J Insect Conserv 10:65–74. doi:10.1007/s10841-005-2642-y

    Article  Google Scholar 

  • Koussouris T, Photis G, Diapoulis A, Bertahas A (1989) Water quality evaluation in lakes of Greece. Advances in water pollution control. In: Wheeler D, Richardson M, Bridges J (eds) MESAEP and CSIC organizations, vol II, pp 119–127

  • Kowalczewski A, Ozimek T (1993) Further long-term changes in the submerged macrophyte vegetation of the eutrophic Lake Mikolajskie (North Poland). Aquat Bot 46:341–345. doi:10.1016/0304-3770(93)90013-M

    Article  Google Scholar 

  • Leica Geosystems (2003) Leica photogrammetry suite configuration guide, Leica Geosystems GIS and Mapping. LLC, Atlanta, Georgia, USA

  • Leonardos I, Kagalou I, Tsoumani M, Economidis PS (2007) Fish fauna in a Greek lake: biodiversity, introduced fish species over an 80-year period and their impacts on the ecosystem. Ecol Freshw Fish 17:165–173. doi:10.1111/j.1600-0633.2007.00268.x

    Article  Google Scholar 

  • Mantzafleri N, Psilovikos A, Blanta A (2009) Water quality monitoring and modelling in Lake Koronia, using GIS. Assessment and management of pollution sources. Water Resour Manag. doi:10.1007/s11269-009-9431-4

  • Mitraki C, Crisman TL, Zalidis G (2004) Lake Koronia, Greece: shift from autotrophy to heterotrophy with cultural eutrophication and progressive water-level reduction. Limnologica 34:110–116. doi:10.1016/S0075-9511(04)80029-X

    Google Scholar 

  • Moss B, Stephen D, Balayla D, Bécares E, Collings SE, Fernández-Aláez C, Fernández-Aláez M, Ferriol C, García P, Gomá J, Gyllström M, Hansson LA, Hietala J, Kairesalo T, Miracle MR, Romo S, Rueda S, Russell V, Ståhl-Delbanco A, Svennson M, Vakkilainen K, Valentin M, Van de Bund WJ, Van Donk E, Vicente E, Villena MJ (2004) Continental-scale patterns of nutrient and fish effects on shallow wetland lakes: synthesis of a pan-European mesocosm experiment. Freshw Biol 49:1633–1650. doi:10.1111/j.1365-2427.2004.01304.x

    Article  Google Scholar 

  • Moustaka-Gouni M (1993) Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249:33–42. doi:10.1007/BF00008841

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2005) Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548:85–99. doi:10.1007/s10750-005-1149-6

    Article  Google Scholar 

  • Niemeier PE, Hubert WA (1986) The 85-year history of the aquatic macrophyte species composition in eutrophic prairie lake (United States). Aquat Bot 25:83–89. doi:10.1016/0304-3770(86)90042-2

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, Assessment and Control. Final Report, Paris

  • Papadopoulos F, Kitsaras L (1990) The Lake of Ioannina “Pamvotida”. Master thesis, Democritus University of Thrace, Xanthi, Greece (in Greek)

  • Papastergiadou E, Agami M, Waisel Y (2002) Restoration of aquatic vegetation in Mediterranean Wetlands. In: Zalidis G, Crisman T, Gerakis PA (eds) Restoration of Mediterranean wetlands. Med Wet Publ., pp 47–69

  • Papastergiadou E, Retalis A, Apostolakis A, Georgiadis T (2008) Environmental monitoring of spatio-temporal changes using remote sensing and GIS in a Mediterranean wetland of Northern Greece. Water Resour Manag 22:579–594. doi:10.1007/s11269-007-9179-7

    Article  Google Scholar 

  • Romero JR, Kagalou I, Imberger J, Hela D, Kotti M, Bartzokas A, Albanis T, Evrimides M, Skarkabounas S, Papagiannis J, Bithava A (2002) Seasonal water quality of shallow and eutrophic lake Pamvotis, Greece: implications for restoration. Hydrobiologia 474:91–105. doi:10.1023/A:1016569124312

    Article  Google Scholar 

  • Romo S, Miracle M, Villena MJ, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshw Biol 49:593–1607. doi:10.1111/j.1365-2427.2004.01305.x

    Article  Google Scholar 

  • Sand-Jensen K (1997) Eutrophication and plant communities in Lake Fure during 100 years. In: Sand-Jensen K, Pedersen O (eds) Freshwater biology. Priorities and development in Danish research. Gad, Copenhagen, pp 26–38

  • Sarika-Hatzinikolaou M (1999) Floral and phytosociological study of aquatic ecosystems of Epirus. Ph.D. thesis, University of Athens, Greece

  • Scheffer M (1998) Ecology of shallow lakes. Chapman and Hall, London, 357 pp

    Google Scholar 

  • Scheffer M, Egbert H (2007) Shallow lakes theory revisited, various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466. doi:10.1007/s10750-007-0616-7

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8(8):275–279

    Article  Google Scholar 

  • Stefanidis K (2005) Ecological research of Lake Pamvotis: investigation of relationships between aquatic vegetation and water quality. M.Sc. thesis, University of Patras, Greece, 136 pp

  • Stefanidis K, Papastergiadou E (2007) Aquatic vegetation and related abiotic environment in a shallow urban lake of Greece. Belg J Bot 140(1):25–38

    Google Scholar 

  • Temponeras M, Kristiansen J, Moustaka-Gouni M (2000) Seasonal variation in phytoplankton composition and physical–chemical features of the shallow Lake Doirani, Macedonia, Greece. Hydrobiologia 424:109–122. doi:10.1023/A:1003909229980

    Article  Google Scholar 

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece PC (2002) Buffered tree population changes in a Quaternary refugium: evolutionary implications. Nature 297:2044–2047

    Google Scholar 

  • United Nations (2003) Report of the World Summit on sustainable Development, Johannesburg, South Africa. A/Conf.199/20/ United Nations, New York, pp 170–173

  • Van Geest GJ, Wolters H, Roozen F, Coops H, Roijackers R, Buijse AD, Scheffer M (2005) Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539:239–248. doi:10.1007/s10750-004-4879-y

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, San Diego, 1006 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Papastergiadou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papastergiadou, E., Kagalou, I., Stefanidis, K. et al. Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration. Water Resour Manage 24, 415–435 (2010). https://doi.org/10.1007/s11269-009-9453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-009-9453-y

Keywords