Abstract
This paper introduces families of bilateral filters for image denoising and sharpness enhancements, JPEG deblocking, and texture filtering. While the Gaussian distribution dictates the application of the bilateral filters, we introduce a wide variety of kernels based on Riemann-Lebesgue’s theorem. The derivation of the bilateral filters are established in both adaptive and non-adaptive approaches. The adaptation of the filters is adjusted via computing the variances (inflection points) using different methods based on applications. For image denoising and sharpness, the variance estimated using Laplacian-of-Gaussian filter followed by affine mapping. The variance is computed as a proportion of intensity differences across the boundary in JPEG deblocking. In texture filtering, the variance is calculated form modified relative variations. We carry out extensive experiments in three different applications and compare the results using different bilateral filters. The proposed filters are giving better results, compared with standard bilateral and adaptive bilateral filters.


















Similar content being viewed by others
References
Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings on IEEE 6th ICCV, 98(1), 839–846.
Paris, S., Kornprobst, P., Tumblin, J., Durand, F., et al. (2009). Bilateral filtering: Theory and applications. Foundations and Trends in Computer Graphics and Vision, 4(1), 1–73.
Knaus, C., & Zwicker, M. (2014). Progressive image denoising. IEEE Transactions on Image Processing, 23(7), 3114–3125.
Chaudhury, K. N., & Rithwik, K., (2015). Image denoising using optimally weighted bilateral filters: A sure and fast approach. in Proceedings on IEEE ICIP. IEEE, pp. 108–112.
Zhang, J., Lin, G., Wu, L., Wang, C., & Cheng, Y. (2015). Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomedical Signal Processing and Control, 18, 1–10.
Cho, H., Lee, H., Kang, H., & Lee, S. (2014). Bilateral texture filtering. ACM Trans. Graph., 33(4), 128.
Akar, S. A. (2016). Determination of optimal parameters for bilateral filter in brain mr image denoising. Applied Soft Computing, 43, 87–96.
Zhang, M., Gunturk, B. K. (2009). Compression artifact reduction with adaptive bilateral filtering, in Proceedings on SPIE, Visual Communication Image Process, 7257, 72571A.
Elhoseny, M., & Shankar, K. (2019). Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement, 143, 125–135.
Chen, B. H., Cheng, H. Y., Tseng, Y. S., & Yin, J. L. (2021). Two-pass bilateral smooth filtering for remote sensing imagery. IEEE Geoscience and Remote Sensing Letters.
D’Hondt, O., Guillaso, S., & Hellwich, O. (2013). Iterative bilateral filtering of polarimetric sar data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1628–1639.
Dong, G., & Acton, S. T. (2007). On the convergence of bilateral filter for edge-preserving image smoothing. IEEE Signal Processing Letters, 14(9), 617–620.
Chaudhury, K. N. (2013). Acceleration of the shiftable \(\mathcal O\mathcal(\mathcal1\mathcal)\) algorithm for bilateral filtering and nonlocal means. IEEE Transactions on Image Processing, 22(4), 1291–1300.
Chaudhury, K. N., & Dabhade, S. D. (2016). Fast and provably accurate bilateral filtering. IEEE Transactions on Image Processing, 25(6), 2519–2528.
Chen, Y., & Shu, Y. (2014). Optimization of bilateral filter parameters via chi-square unbiased risk estimate. IEEE Signal Processing Letter, 21(1), 97–100.
Ghosh, S., & Chaudhury, K. N. (2016). On fast bilateral filtering using Fourier kernels. IEEE Signal Processing Letters, 23(5), 570–573.
Papari, G., Idowu, N., & Varslot, T. (2016). Fast bilateral filtering for denoising large 3D images. IEEE Transactions on Image Processing, 26(1), 251–261.
Chen, B. H., Tseng, Y. S., & Yin, J. L. (2020). Gaussian-adaptive bilateral filter. IEEE Signal Processing Letters, 27, 1670–1674.
Zhang, B., & Allebach, J. P. (2008). Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Transactions on Image Processing, 17(5), 664–678.
Chaudhury, K. N., Sage, D., & Unser, M. (2011). Fast \(\cal{O}(1)\) bilateral filtering using trigonometric range kernels. IEEE Transactions on Image Processing, 20(12), 3376–3382.
Dai, L., Yuan, M., & Zhang, X. (2016). Speeding up the bilateral filter: A joint acceleration way. IEEE Transactions on Image Processing, 25(6), 2657–2672.
Sugimoto, K., & Kamata, S. I. (2015). Compressive bilateral filtering. IEEE Transactions on Image Processing, 24(11), 3357–3369.
Ghosh, S., Nair, P., & Chaudhury, K. N. (2018). Optimized Fourier bilateral filtering. IEEE Signal Processing Letter, 25(10), 1555–1559.
Chandrasekharan, K. (1989). Classical Fourier Transforms. Berlin: Springer.
Gunturk, B. K. (2011). Fast bilateral filter with arbitrary range and domain kernels. IEEE Transactions on Image Processing, 20(9), 2690–2696.
Pan, S., An, X., & He, H. (2014). Optimal \(\cal{O} (1)\) bilateral filter with arbitrary spatial and range kernels using sparse approximation. Mathematical Problems in Engineering, 2014.
Annaby, M. H., & Tharwat, M. M. (2007). Sinc-based computations of eigenvalues of dirac systems. BIT Numerical Mathematics, 47(4), 699–713.
—. (2019). Sinc-regularized techniques to compute eigenvalues of Schrödinger operators on \({L}^2({I})\oplus {C}^2\). Numerical Algorithm, 80(3), 795–817.
Higgins, J. R. (1996). Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford: Oxford University Press.
Gibson, C. G. (2001). Elementary Geometry of Differentiable Curves: An Undergraduate Introduction. Cambridge: Cambridge University Press.
Truesdell, C. (1989). Maria Gaetana Agnesi. Archive for History of Exact Sciences, 40, 113–142.
Tolstov, G. P. (1962). Fourier Series. New York: Dover.
Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P., et al. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Zhang, J., Xiong, R., Zhao, C., Zhang, Y., Ma, S., & Gao, W. (2016). CONCOLOR: Constrained non-convex low-rank model for image deblocking. IEEE Transactions on Image Processing, 25(3), 1246–1259.
Zhang, Q., Shen, X., Xu, L., & Jia, J. (2014). Rolling guidance filter. in Proceedings of European Conference in Computer Vision. Springer, pp. 815–830.
Gavaskar, R. G., & Chaudhury, K. N. (2018). Fast adaptive bilateral filtering. IEEE Transactions on Image Processing, 28(2), 779–790.
Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transanctions on Graphics (TOG), 27(3), 1–10.
He, K., Sun, J., & Tang, X. (2012). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–140.
Ghosh, S., Gavaskar, R. G., Panda, D., & Chaudhury, K. N. (2019). Fast scale-adaptive bilateral texture smoothing. IEEE Transactions on Circuits and Systems for Video Technology, 30(7), 2015–2026.
Ono, S. (2017). \(L_0\) gradient projection. IEEE Transactions on Image Process, 26(4), 1554–1564.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. in Proceedings of ICNN’95-international conference on neural networks, 4, 1942–1948.
Ghosh, S., & Chaudhury, K. N. (2019). Fast bright-pass bilateral filtering for low-light enhancement. in 2019 IEEE International Conference on Image Processing (ICIP), pp. 205–209.
—. (2018). Color bilateral filtering using stratified fourier sampling. in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 26–30.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Annaby, M.H., Nehary, E.A. Bilateral Filters with Adaptive Generalized Kernels Generated via Riemann-Lebesgue Theorem. J Sign Process Syst 93, 1301–1322 (2021). https://doi.org/10.1007/s11265-021-01707-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-021-01707-6