Abstract
NP-hard problems such as the maximum clique or minimum vertex cover problems, two of Karp’s 21 NP-hard problems, have several applications in computational chemistry, biochemistry and computer network security. Adiabatic quantum annealers can search for the optimum value of such NP-hard optimization problems, given the problem can be embedded on their hardware. However, this is often not possible due to certain limitations of the hardware connectivity structure of the annealer. This paper studies a general framework for a decomposition algorithm for NP-hard graph problems aiming to identify an optimal set of vertices. Our generic algorithm allows us to recursively divide an instance until the generated subproblems can be embedded on the quantum annealer hardware and subsequently solved. The framework is applied to the maximum clique and minimum vertex cover problems, and we propose several pruning and reduction techniques to speed up the recursive decomposition. The performance of both algorithms is assessed in a detailed simulation study.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akiba, T., & Iwata, Y. (2015). Branch-and-reduce exponential/fpt algorithms in practice: A case study of vertex cover. In 2015 Proceedings of the Seventeenth Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 1–12).
Akiba, T., & Iwata, Y. (2015). Vertex cover solver. https://github.com/wata-orz/vertex_cover.
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M E ́, Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., & Evans, A.C. (2013). Bigbrain: an ultrahigh-resolution 3d human brain model. Science, 340(6139), 1472–1475.
Bader, D.A., Meyerhenke, H., Sanders, P., & Wagner, D. (2013). Graph Partitioning and Graph Clustering. 10th DIMACS Implementation Challenge Workshop February 13-14, 2012. Contemp Math 588.
Balasubramanian, R., Fellows, M., & Raman, V. (1998). An improved fixed parameter algorithm for vertex cover. Information Processing Letters, pp. 163–168.
Bar-Yehuda, R., & Even, S. (1985). A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics, 25, 27–46.
Barahona, F. (1982). On the computational complexity of ising spin glass models. Journal of Physics A Mathematical and General, 15, 3241–3253.
Batagelj, V., & Zaversnik, M. (2011). An O(m) Algorithm for Cores Decomposition of Networks. Adv Dat An Class 5(2).
Boros, E., & Hammer, P. (2002). Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1–3), 155–225.
Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.
Budinich, M. (2003). Exact bounds on the order of the maximum clique of a graph. Discrete Applied Mathematics, 127(3), 535–543.
Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9(6), 375–382.
Chapuis, G., Djidjev, H., Hahn, G., & Rizk, G. (2017). Finding maximum cliques on the D-Wave quantum annealer. In Proceedings of the 2017 ACM International Conference on Computing Frontiers (CF’17) (pp. 1–8).
Chen, J., Liu, L., & Jia, W. (2000). Improvement on vertex cover for low degree graphs. Networks, 35, 253–259.
Chen, J., Kanj, I., & Jia, W. (2001). Vertex cover: further observations and further improvements. Journal of Algorithms, 41, 280–301.
Chen, J., Kanj, I., & Xia, G. (2010). Improved upper bounds for vertex cover. Theoretical Computer Science, 411, 3736–3756.
Choi, V. (2008). Minor-embedding in adiabatic quantum computation: i. the parameter setting problem. Quantum Information Processing, 7, 193–209.
Cohen, W. (2009). Enron email dataset. Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science STACS 99 http://www.cs.cmu.edu/~enron. Accessed in 2009.
Courcelle, B., Makowsky, J., & Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2), 125–150.
D-Wave. (2016). Technical Description of the D-Wave Quantum Processing Unit. D-Wave.
DIMACS. (2000). Workshop on Faster Exact Algorithms for NP-hard problems. Princeton.
Djidjev, H, Hahn, G, Niklasson, A, & Sardeshmukh, V. (2015). Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics. SIAM Workshop on Combinatorial Scientific Computing CSC16.
Djidjev, H., Chapuis, G., Hahn, G., & Rizk, G. (2016). Efficient combinatorial optimization using quantum annealing. LA-UR-16-27928 arXiv:180108653.
Downey, R., & Fellows, M. (1992). Fixed-parameter tractability and completeness. Congressus Numerantium, 87, 161– 187.
Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Math Inst of the Hungarian Academy of Sciences, 5, 17–61.
Fomin, F.V., Grandoni, F., & Kratsch, D. (2006). Measure and conquer: A Simple o(20.288n) Independent Set Algorithm. In SODA ’06:, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm (pp. 18–25).
Giakoumakis, V., & Vanherpe, J. (1997). On extended P4-reducible and extended P4-sparse graphs. Theoret Comput Sci, 180, 269–286.
Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of SciPy2008 (pp. 11–15).
Hahn, G., & Djidjev, H.N. (2017). Reducing binary quadratic forms for more scalable quantum annealing. In IEEE International Conference on Rebooting Computing (ICRC) (pp. 1–8).
Hou, Y.T., Shi, Y., & Sherali, H.D. (2014). Branch-and-bound framework and application. Cambridge University Press, pp. 95–121.
Johnson, D., & Tricks, M. (1996). Cliques, Coloring and Satisfiability, Second DIMACS Implementation Challenges.
Lucas, A. (2014). Ising formulations of many NP problems. Frontiers of Physics, 2(5), 1–27.
Morrison, D., Jacobson, S., Saupp, J., & Sewell, E. (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19, 79–102. https://doi.org/10.1016/j.disopt.2016.01.005.
Niedermeier, R., & Rossmanith, P. (2003). On efficient fixed-parameter algorithms for weighted vertex cover. Journal of Algorithms, 47, 63–77.
Niedermeier, R., & Rossmanith, P. (2007). Upper bounds for vertex cover further improved. In: Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science (STACS).
Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Wk, Liao, & Choudhary, A. (2013). Fast algorithms for the maximum clique problem on massive sparse graphs. In Bonato, A., Mitzenmacher, M., & Prałat, P. (Eds.) Algorithms and models for the web graph (pp. 156–169). Cham: Springer International Publishing.
Pelofske, E., Hahn, G., & Djidjev, H. (2019). Solving large maximum clique problems on a quantum annealer. In Proceedings of the International Workshop on Quantum Technology and Optimization Problems QTOP’19 (pp. 123–135).
Pelofske, E., Hahn, G., & Djidjev, H. (2019). Solving large Minimum Vertex Cover problems on a quantum annealer. In Proceedings of the Computing Frontiers Conference CF’19 (pp. 76–84).
Rao, M. (2008). Solving some NP-complete problems using split decomposition. Discrete Applied Mathematics, 156(14), 2768–2780.
Robson, J. (1986). Algorithms for Maximum independent Sets. Journal of Algorithms, 7, 425–440.
Robson, J.M. (2001). Finding a maximum independent set in time o(2n/4). https://www.labri.fr/perso/robson/mis/techrep.html.
Rossi, R., Gleich, D., & Gebremedhin, A. (2015). Parallel maximum clique algorithms with applications to network analysis. SIAM Journal on Scientific Computing, 37(5), C589–C616.
Rossi, R.A., & Ahmed, N.K. Coloring large complex networks. In: Social Network Analysis and Mining, pp 1–51.
Rossi, R.A., & Ahmed, N.K. (2015). The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. http://networkrepository.com.
Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., & Patwary, M.A. (2012). What if CLIQUE were fast?. Maximum Cliques in Information Networks and Strong Components in Temporal Networks. arXiv:12105802, pp. 1–11.
Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., & Patwary, M.A. (2014). Fast maximum clique algorithms for large graphs. In: Proceedings of the 23rd International Conference on World Wide Web (WWW).
Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007). Optimizing binary MRFs via extended roof duality. CVPR.
SocioPatterns. (2012). Infectious contact networks. http://www.sociopatterns.org/datasets. Accessed 09/12/12.
Stege, U., & Fellows, M. (1999). An improved fixed-parameter-tractable algorithm for vertex cover Technical Report 318. Department of Computer Science, ETH Zurich.
Tarjan, R. (1985). Decomposition by clique separators. Discrete Math, 55(2), 221–232.
Willis, W. (2011). Bounds for the independence number of a graph. Master’s thesis, Virginia Commonwealth University. https://scholarscompass.vcu.edu/etd/2575.
Woeginger, G. (2008). Open problems around exact algorithms. Discrete Applied Mathematics, 156(3), 397–405.
Xiao, M., & Nagamochi, H. (2013). Exact algorithms for maximum independent set. In Cai, L., Cheng, S. W., & Lam, T W (Eds.) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, Vol. 8283. Berlin: Springer.
Xu, H., Kumar, T., & Koenig, S. (2016). A new solver for the minimum weighted vertex cover problem. In Quimper, CG (Ed.) Integration of AI and OR techniques in constraint programming CPAIOR 2016 lecture notes in computer science, Vol. 9676. Cham: Springer.
Acknowledgments
Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20180267ER and 20190065DR.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pelofske, E., Hahn, G. & Djidjev, H. Decomposition Algorithms for Solving NP-hard Problems on a Quantum Annealer. J Sign Process Syst 93, 405–420 (2021). https://doi.org/10.1007/s11265-020-01550-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-020-01550-1