Abstract
This paper presents a systematic approach for image-based fingerprint recognition. The proposed method first enhances an input fingerprint image using a contextual filtering based method in the frequency domain. Complex filters are used for the detection of the core point, and a region of interest (ROI) of a predefined size centered at the detected core point is extracted. The resulting ROI is rotated based on the angle of the detected core point to ensure rotation invariance. Subsequently, the proposed system extracts the average absolute deviation (AAD) from the outputs of a Gabor filter bank. To reduce the dimensionality of the extracted features whilst generating more discriminatory representation, this paper compares the unsupervised Principal Component Analysis (PCA) and the supervised Linear Discriminant Analysis (LDA) methods for dimensionality reduction. User-specific thresholding schemes are investigated to improve the verification performance. The effectiveness of the proposed method is demonstrated through extensive experimentation on the FVC2002 set_a public database, in both identification and verification scenarios.
Similar content being viewed by others
References
Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(3), 4–20.
Jain, A. K., Ross, A., & Prabhakar, S. (2006). Biometrics: A tool for information security. IEEE Transactions on Information Forensics and Security, 1(2), 125–143.
Bolle, R. M., Connel, J. H., & Ratha, N. K. (2002). Biometric perils and patches. Pattern Recognition, 35, 2727–2738.
Jain, A., Bolle, R., & Pankanti, S. (1999). Biometrics: The personal identification in networked society. Kluwer.
Ross, A., Jain, A., & Reisman, J. (2003). A hybrid fingerprint matcher. Pattern Recognition, 36(7), 1661–1673.
Ratha, N., Chen, S., & Jain, A. (1995). Adaptive flow orientation-based feature-extraction in fingerprint images. Pattern Recognition, 28(11), 1657–1672.
Ratha, N., Karu, K., Chen, S., & Jain, A. (1996) Real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813.
Jain, A., Hong, L., & Bolle, R. (1997). Real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 302–314.
Jain, A., Hong, L., Pankanti, S., & Bolle, R. (1997). An identity-authentication system using fingerprints. Proceeding of the IEEE, 85(9), 1365–1388.
Tico, M., Immomen, E., Ramo, P., Kuosmanen, P., & Saarinen, J. (2001). Fingerprint recognition using wavelet features. In Proc. ISCAS, Australia (Vol. 2, pp. 21–24).
Tico, M., Kuosmanen, P., & Saarinen, J. (2001). Wavelet domain features for fingerprint recognition. Electronic Letters, 37(1), 21–22.
Hung, D. D. (1993). Enhancement and feature purification of fingerprint images. Pattern Recognition, 26(11), 1661–1671.
Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition (2nd ed.). London: Springer.
Khalil, M. S., Mohamad, D., Khan, M. K., & Al-Nuzaili, Q. (2010). Fingerprint pattern classification. Digital Signal Processing, 20, 1264–1273.
Wang, C. L. S. (1999). Fingerprint feature extraction using gabor filters. Electronic Letters, 35(4), 288–290.
Amornraksa, T., & Tachaphetpiboon, S. (2006). Fingerprint recognition using DCT features. Electronics Letters, 42(9), 522–523.
Jain, A. K., Prabharkar, S., Hong, L., & Pankanti, S. (2000). Filterbank-based fingerprint matching. IEEE Transactions on Image Processing, 9(5), 846–859.
Jin, A. T. B., Ling, D. N. C., & Song, O. T. (2004). An efficient fingerprint verification system using integrated wavelet and Fourier–Mellin invariant transform. Image and Vision Computing, 22(6), 503–513.
Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.
Yang, J. C., & Park, D. S. (2008). A fingerprint verification algorithm using tessellated invariant moment features. Neurocomputing, 71(10–12), 1939–1946.
Yang, J. C., & Park, D. S. (2008). Fingerprint verification based on invariant moment features and nonlinear bpnn. International Journal of Control, Automation, and Systems, 6(6), 800–808.
Chikkerur, S., Cartwright, A. N., & Govindaraju, V. (2007). Fingerprint enhancement using STFT analysis. Pattern Recognition, 40(1), 198–211.
Kawagoe, M., & Tojo, A. (1984). Fingerprint pattern classification. Pattern Recognition, 17(3), 295–303.
Karu, K., & Jain, A. K. (1996). Fingerprint classification. Pattern Recognition, 29(3), 389–403.
Jain, A. K., Prabharkar, S., & Hong, L. (1999). A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 348–358.
Bazen, A. M., & Gerez, S. H. (2002). Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 905–919.
Nilsson, K., & Bigun, J. (2002). Complex filters applied to fingerprint images detecting prominent symmetry points used for alignment. In Biometric authentication (pp. 39–47).
Prabhakar, S. (2001). Fingerprint classification and matching using a filterbank. Ph.D. thesis, Michigan State University.
Jolliffe, L. (1986). Principle component analysis. New York: Springer.
Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on PAMI, 19(7), 711–720.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ibrahim, M.T., Wang, Y., Guan, L. et al. A Filter Bank Based Approach for Rotation Invariant Fingerprint Recognition. J Sign Process Syst 68, 401–414 (2012). https://doi.org/10.1007/s11265-011-0630-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-011-0630-x