A Filter Bank Based Approach for Rotation Invariant Fingerprint Recognition | Journal of Signal Processing Systems Skip to main content
Log in

A Filter Bank Based Approach for Rotation Invariant Fingerprint Recognition

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a systematic approach for image-based fingerprint recognition. The proposed method first enhances an input fingerprint image using a contextual filtering based method in the frequency domain. Complex filters are used for the detection of the core point, and a region of interest (ROI) of a predefined size centered at the detected core point is extracted. The resulting ROI is rotated based on the angle of the detected core point to ensure rotation invariance. Subsequently, the proposed system extracts the average absolute deviation (AAD) from the outputs of a Gabor filter bank. To reduce the dimensionality of the extracted features whilst generating more discriminatory representation, this paper compares the unsupervised Principal Component Analysis (PCA) and the supervised Linear Discriminant Analysis (LDA) methods for dimensionality reduction. User-specific thresholding schemes are investigated to improve the verification performance. The effectiveness of the proposed method is demonstrated through extensive experimentation on the FVC2002 set_a public database, in both identification and verification scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(3), 4–20.

    Article  Google Scholar 

  2. Jain, A. K., Ross, A., & Prabhakar, S. (2006). Biometrics: A tool for information security. IEEE Transactions on Information Forensics and Security, 1(2), 125–143.

    Article  Google Scholar 

  3. Bolle, R. M., Connel, J. H., & Ratha, N. K. (2002). Biometric perils and patches. Pattern Recognition, 35, 2727–2738.

    Article  MATH  Google Scholar 

  4. Jain, A., Bolle, R., & Pankanti, S. (1999). Biometrics: The personal identification in networked society. Kluwer.

  5. Ross, A., Jain, A., & Reisman, J. (2003). A hybrid fingerprint matcher. Pattern Recognition, 36(7), 1661–1673.

    Article  Google Scholar 

  6. Ratha, N., Chen, S., & Jain, A. (1995). Adaptive flow orientation-based feature-extraction in fingerprint images. Pattern Recognition, 28(11), 1657–1672.

    Article  Google Scholar 

  7. Ratha, N., Karu, K., Chen, S., & Jain, A. (1996) Real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813.

    Article  Google Scholar 

  8. Jain, A., Hong, L., & Bolle, R. (1997). Real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 302–314.

    Article  Google Scholar 

  9. Jain, A., Hong, L., Pankanti, S., & Bolle, R. (1997). An identity-authentication system using fingerprints. Proceeding of the IEEE, 85(9), 1365–1388.

    Article  Google Scholar 

  10. Tico, M., Immomen, E., Ramo, P., Kuosmanen, P., & Saarinen, J. (2001). Fingerprint recognition using wavelet features. In Proc. ISCAS, Australia (Vol. 2, pp. 21–24).

  11. Tico, M., Kuosmanen, P., & Saarinen, J. (2001). Wavelet domain features for fingerprint recognition. Electronic Letters, 37(1), 21–22.

    Article  Google Scholar 

  12. Hung, D. D. (1993). Enhancement and feature purification of fingerprint images. Pattern Recognition, 26(11), 1661–1671.

    Article  Google Scholar 

  13. Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition (2nd ed.). London: Springer.

    Book  Google Scholar 

  14. Khalil, M. S., Mohamad, D., Khan, M. K., & Al-Nuzaili, Q. (2010). Fingerprint pattern classification. Digital Signal Processing, 20, 1264–1273.

    Article  Google Scholar 

  15. Wang, C. L. S. (1999). Fingerprint feature extraction using gabor filters. Electronic Letters, 35(4), 288–290.

    Article  Google Scholar 

  16. Amornraksa, T., & Tachaphetpiboon, S. (2006). Fingerprint recognition using DCT features. Electronics Letters, 42(9), 522–523.

    Article  Google Scholar 

  17. Jain, A. K., Prabharkar, S., Hong, L., & Pankanti, S. (2000). Filterbank-based fingerprint matching. IEEE Transactions on Image Processing, 9(5), 846–859.

    Article  Google Scholar 

  18. Jin, A. T. B., Ling, D. N. C., & Song, O. T. (2004). An efficient fingerprint verification system using integrated wavelet and Fourier–Mellin invariant transform. Image and Vision Computing, 22(6), 503–513.

    Article  Google Scholar 

  19. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.

    Google Scholar 

  20. Yang, J. C., & Park, D. S. (2008). A fingerprint verification algorithm using tessellated invariant moment features. Neurocomputing, 71(10–12), 1939–1946.

    Article  Google Scholar 

  21. Yang, J. C., & Park, D. S. (2008). Fingerprint verification based on invariant moment features and nonlinear bpnn. International Journal of Control, Automation, and Systems, 6(6), 800–808.

    Google Scholar 

  22. Chikkerur, S., Cartwright, A. N., & Govindaraju, V. (2007). Fingerprint enhancement using STFT analysis. Pattern Recognition, 40(1), 198–211.

    Article  MATH  Google Scholar 

  23. Kawagoe, M., & Tojo, A. (1984). Fingerprint pattern classification. Pattern Recognition, 17(3), 295–303.

    Article  Google Scholar 

  24. Karu, K., & Jain, A. K. (1996). Fingerprint classification. Pattern Recognition, 29(3), 389–403.

    Article  Google Scholar 

  25. Jain, A. K., Prabharkar, S., & Hong, L. (1999). A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 348–358.

    Article  Google Scholar 

  26. Bazen, A. M., & Gerez, S. H. (2002). Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 905–919.

    Article  Google Scholar 

  27. Nilsson, K., & Bigun, J. (2002). Complex filters applied to fingerprint images detecting prominent symmetry points used for alignment. In Biometric authentication (pp. 39–47).

  28. Prabhakar, S. (2001). Fingerprint classification and matching using a filterbank. Ph.D. thesis, Michigan State University.

  29. Jolliffe, L. (1986). Principle component analysis. New York: Springer.

    Google Scholar 

  30. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on PAMI, 19(7), 711–720.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Talal Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, M.T., Wang, Y., Guan, L. et al. A Filter Bank Based Approach for Rotation Invariant Fingerprint Recognition. J Sign Process Syst 68, 401–414 (2012). https://doi.org/10.1007/s11265-011-0630-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0630-x

Keywords

Navigation